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Descending to Complementarity

Strategies in modern Automatic Theorem Provers
The use of proving strategies is an essential element in
high-performance ATPs such as E, iProver, or Vampire.

They are combined into schedules (sequential or parallel)
empirically selected to have complementary powers

Neural network guided theorem proving
In recent years, systems like ENIGMA or Deepire were able to
dramatically improve the performance of an ATP by integrating
neural networks and learning appropriate guiding heuristics
However: always only improved a single base strategy!

➥ Could we train a full host of heuristics using gradient descent?
Breed specialisations to problems, complementary by design?



1/14

Descending to Complementarity

Strategies in modern Automatic Theorem Provers
The use of proving strategies is an essential element in
high-performance ATPs such as E, iProver, or Vampire.
They are combined into schedules (sequential or parallel)
empirically selected to have complementary powers

Neural network guided theorem proving
In recent years, systems like ENIGMA or Deepire were able to
dramatically improve the performance of an ATP by integrating
neural networks and learning appropriate guiding heuristics
However: always only improved a single base strategy!

➥ Could we train a full host of heuristics using gradient descent?
Breed specialisations to problems, complementary by design?



1/14

Descending to Complementarity

Strategies in modern Automatic Theorem Provers
The use of proving strategies is an essential element in
high-performance ATPs such as E, iProver, or Vampire.
They are combined into schedules (sequential or parallel)
empirically selected to have complementary powers

Neural network guided theorem proving
In recent years, systems like ENIGMA or Deepire were able to
dramatically improve the performance of an ATP by integrating
neural networks and learning appropriate guiding heuristics

However: always only improved a single base strategy!

➥ Could we train a full host of heuristics using gradient descent?
Breed specialisations to problems, complementary by design?



1/14

Descending to Complementarity

Strategies in modern Automatic Theorem Provers
The use of proving strategies is an essential element in
high-performance ATPs such as E, iProver, or Vampire.
They are combined into schedules (sequential or parallel)
empirically selected to have complementary powers

Neural network guided theorem proving
In recent years, systems like ENIGMA or Deepire were able to
dramatically improve the performance of an ATP by integrating
neural networks and learning appropriate guiding heuristics
However: always only improved a single base strategy!

➥ Could we train a full host of heuristics using gradient descent?
Breed specialisations to problems, complementary by design?



1/14

Descending to Complementarity

Strategies in modern Automatic Theorem Provers
The use of proving strategies is an essential element in
high-performance ATPs such as E, iProver, or Vampire.
They are combined into schedules (sequential or parallel)
empirically selected to have complementary powers

Neural network guided theorem proving
In recent years, systems like ENIGMA or Deepire were able to
dramatically improve the performance of an ATP by integrating
neural networks and learning appropriate guiding heuristics
However: always only improved a single base strategy!

➥ Could we train a full host of heuristics using gradient descent?

Breed specialisations to problems, complementary by design?



1/14

Descending to Complementarity

Strategies in modern Automatic Theorem Provers
The use of proving strategies is an essential element in
high-performance ATPs such as E, iProver, or Vampire.
They are combined into schedules (sequential or parallel)
empirically selected to have complementary powers

Neural network guided theorem proving
In recent years, systems like ENIGMA or Deepire were able to
dramatically improve the performance of an ATP by integrating
neural networks and learning appropriate guiding heuristics
However: always only improved a single base strategy!

➥ Could we train a full host of heuristics using gradient descent?
Breed specialisations to problems, complementary by design?



2/14

Outline

1 How Does It Work?

2 Stateless Clause Selection Reinforcement

3 Neural Strategies in Practice

4 Conclusion



3/14

Outline

1 How Does It Work?

2 Stateless Clause Selection Reinforcement

3 Neural Strategies in Practice

4 Conclusion



4/14

The Idea In One Slide

Embedding problems into a latent space of strategies:

a latent “tweak” variable vp for every training problem p

initially unknown: e.g., vp = 0⃗ for every p ∈ Train
eventually to represent the “ideal strategy for proving p”

Condition guidance on vp:
Instead of Nθ(input), let’s use Nθ(input, vp) on p

Gradient formula becomes:

∇θ,vpLoss(Nθ(input, vp), target)

In training, vp “travels” in the strategy space to encode a
specialization of the general guiding heuristic suitable for p

Pick the embedding’s dimension well!
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A Bit of Background

Clause selection

arguably the most important choice point in saturation-based
proving

Passive → ?givenClause? → Active

“What is the next likeliest clause to participate in the proof?”

Traditional clause selection heuristics
simple criteria: age, weight, . . .
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

“Thus, there is real synergy in the interleaved strategies, which
beat not only the individual components but also their union.”

— Schulz & Möhrmann, 2016
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RL-derived clause selection heuristics in Vampire

AITP 2022: Can we, through deep reinforcement learning,
somehow re-discover this age/weight-queue alternation?

Architecture design
simple clause features: age, weight, pos/neg-length,
justEq/justNeq, varOcc, goalDist, numSplits
the neural part: MLP(featuresC ) → logit
stateless: no conjecture dependence, no proof planning
yet learning from traces: Passive1,Passive2, . . . ,Passiven
at each step (e.g., step i), the agent is thought to sample:

softmax ([MLP(featuresC )]C∈Passive i )

“reward”: learn from proof clauses at each step
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One queue to rule them all!
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Challenges of Breeding Strategies for This RL Setup

Early stopping in RL?
keep some traces aside for validation purposes
suddenly, a more careful learning rate does not hurt
(reevaluation with the updated policy is the costly bit)

➥ Huge speedups through this!

Maintaining the strategy space embeddings vp:
for p ∈ Train: updated with gradient descent
for p ∈ Valid : try finding best vp before contributing to loss
for p ∈ Unseen: ?
➥ Unconditional schedule like with Snake?
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How Well Does It Work?
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How Well Does the Reward/Loss Capture the “True Game”?

A trace collected from solving the TPTP problem GRA002+1
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Concluding Remarks

Summary:
Neural guiding models for ATPs can be “tweaked” to create
targeted proving strategies
This is basically just gradient descent, but a few aspects
require extra care (picking the right dimension, validation, . . . )

Related:
If we were to add an inference model (i.e., a IM : p → vp)
then that’s what, e.g., ENIGMA is already doing with
conjecture-conditioned guidance ⇒ These are strategies too!

Thank you!
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