# Automated Theorem Proving for Metamath 

Mario Carneiro, Chad E. Brown and Josef Urban

CMU, Pittsburgh and CTU in Prague

AITP 2023<br>September 6, 2023

## Metamath

- proof assistant developed by Norman Megill in 1990
- set.mm - its largest library, 40338 theorems in ZFC
- analysis, topology, graph theory, number theory, Hilbert spaces, ...
- small but active community
- minimalist design vs a large library of advanced results
- no tactics and no hammers yet (this work)


## Metamath on the Freek Wiedijk's 100 list

Table: Ranking of Proof Assistants as of 2023

| Proof Assistant | Score |
| :--- | :---: |
| HOL Light | 87 |
| Isabelle | 87 |
| Coq | 79 |
| Lean | 76 |
| Metamath | 74 |
| Mizar | 69 |
| ProofPower | 43 |
| nqthm/ACL2 | 28 |
| PVS | 26 |
| NuPRL/MetaPRL | 8 |

## Metamath and Bundling

- Metamath = "Metavariable Mathematics"
- Example: $\exists x \cdot x=y$
- $x$ and $y$ may be the same:
- $\exists u . u=v$ vs $\exists u . u=u$
- "bundling:" one Metamath theorem represents many $\alpha$-equivalence classes of theorems.


## Metamath Zero

- MMO between MM and HOL
- MMO addresses the bundling issue: one theorem is one $\alpha$-equivalence class of theorems in MM0
- Previous example splits into two MM0 theorems:
- $\exists x \cdot x=y$ and $\exists x \cdot x=x$
- Actually:

$$
\text { wex } x \text { (wceq (cv } x)(c v y))
$$

## Metamath Zero to Metamath-HOL

- The HOL version of metamath has three base types:
- wff (formulas)
- setvar (sets)
- class (classes)
- As usual, we use $\lambda$ to handle binding.
- Example: $(\forall x . \varphi) \rightarrow \varphi$
- MM0 version is wi (wall $x \varphi$ ) $\varphi$ where $x$ has type setvar and $\varphi$ has type wff $x$.
- MM-HOL version is

$$
\forall \varphi: \text { setvar } \rightarrow \text { wff. } \forall x: \text { setvar.(wi (wal }(\lambda x: \text { setvar. } \varphi x))(\varphi x))
$$

## Three translations from Metamath-HOL to TH0

- We have three translations to TH0.
- They differ in how much of the intended logical semantics we build in.
- In TH0 we reduce to two base types: o (formulas) and $\iota$ (sets).
- The type class translates to the type $\iota \rightarrow 0$.
- In each case we use the Metamath proof to determine dependencies (what is needed to prove the theorem).
- We only include the dependencies in the corresponding TH0 problems.
- The three translations differ in how various MM-HOL primitives are translated.


## Metamath-HOL primitives (v1 translation)

- There are many primitives in the MM-HOL source, e.g.:
- wi : wff $\rightarrow$ wff $\rightarrow$ wff (implication)
- wa : wff $\rightarrow$ wff $\rightarrow$ wff (conjunction)
- wceq : class $\rightarrow$ class $\rightarrow$ wff (equality on classes)
- wal : (setvar $\rightarrow$ wff) $\rightarrow$ wff (universal quantification)
- wsb : (setvar $\rightarrow$ wff) $\rightarrow$ (setvar $\rightarrow$ wff) (substitution)
- cab : (setvar $\rightarrow$ wff) $\rightarrow$ class (class abstraction)
- In the " v 1 " translation we leave all these as primitives, e.g.:
- wi : $0 \rightarrow 0 \rightarrow 0$
- wa: $0 \rightarrow 0 \rightarrow 0$
- wceq : $(\iota \rightarrow 0) \rightarrow(\iota \rightarrow 0) \rightarrow 0$
- wal : $(\iota \rightarrow 0) \rightarrow 0$
- wsb : $(\iota \rightarrow 0) \rightarrow(\iota \rightarrow 0)$
- cab : $(\iota \rightarrow 0) \rightarrow(\iota \rightarrow 0)$
- Note that all the v1 TH0 problems will know about "wi" will be the dependencies of the problem that mention wi.


## Metamath-HOL primitives (v2 translation)

- There are many primitives in the MM-HOL source, e.g.:
- wi : wff $\rightarrow$ wff $\rightarrow$ wff (implication)
- wa : wff $\rightarrow$ wff $\rightarrow$ wff (conjunction)
- wceq : class $\rightarrow$ class $\rightarrow$ wff (equality on classes)
- wal : (setvar $\rightarrow$ wff) $\rightarrow$ wff (universal quantification)
- wsb : (setvar $\rightarrow$ wff) $\rightarrow$ (setvar $\rightarrow$ wff) (substitution)
- cab : (setvar $\rightarrow$ wff) $\rightarrow$ class (class abstraction)
- In the " v 2 " translation we translate logical operators as their TH0 counterparts.
- wi translates to $\lambda p q: o . p \rightarrow q$.
- wa translates to $\lambda p q: o . p \wedge q$.
- wceq translates to $\lambda X Y: \iota \rightarrow 0 . X=Y$.
- wal translates to $\lambda p: \iota \rightarrow 0 . \forall x: \iota . p x$.
- The other primitives are left as in the v 1 translation:
- wsb : $(\iota \rightarrow 0) \rightarrow(\iota \rightarrow 0)$
- cab: $(\iota \rightarrow 0) \rightarrow(\iota \rightarrow 0)$
- Note that given a v2 TH0 problem, an ATP can reason directly about wi as implication.


## Metamath-HOL primitives (v3 translation)

- There are many primitives in the MM-HOL source, e.g.:
- wi : wff $\rightarrow$ wff $\rightarrow$ wff (implication)
- wa : wff $\rightarrow$ wff $\rightarrow$ wff (conjunction)
- wceq : class $\rightarrow$ class $\rightarrow$ wff (equality on classes)
- wal : (setvar $\rightarrow$ wff) $\rightarrow$ wff (universal quantification)
- wsb : (setvar $\rightarrow$ wff) $\rightarrow$ (setvar $\rightarrow$ wff) (substitution)
- cab : (setvar $\rightarrow$ wff) $\rightarrow$ class (class abstraction)
- In the "v3" translation modifies the v2 translation to also interpret a number of other primitives.
- wsb and cab both translate to $\lambda X: \iota \rightarrow 0 . X$.


## Translating Metamath-HOL to First-Order Class Theory

- By treating set variables as objects, we can translate Metamath-HOL into a first-order class theory.
- Translate wff to a first-order term (a class) and use a predicate $p$ to determine if the term corresponding to the wff is "true."
- Translate a set variable $x_{i}$ in a context $x_{1}, \ldots, x_{n}$ as a constant vari .
- Translate classes as first-order terms.
- We do not include properties of class theory in the first-order ATP problem.
- So: often MM-HOL theorems will translate to FO non-theorems.
- But: All FO translations of MM-HOL yield Horn clauses
- Helps with proof reconstruction (see later)


## Higher-order ATP Benchmark

- https://github.com/ai4reason/mm-atp-benchmark
- The three HO versions for the re-proving (small/bushy) problems
- For v3 we also provide the large (hammering/chainy) problems
- The 40338 Metamath theorems expand (via MM0) to 40556 THF theorems/problems
- The 218 extra theorems are those used in their $\alpha$-degenerate form later in the library
- A new source of problems for evaluating and improving higher-order ATPs


## HO ATP Evaluation

| System | mode | version | time (s) | solved |
| :--- | :--- | :--- | :--- | :--- |
| Z | portfolio | v3 | 280 | 25420 |
| Z | portfolio | v2 | 280 | 24959 |
| V | portfolio | v3 | 280 | 23555 |
| Z | portfolio | v2 | 140 | 23518 |
| V | portfolio | v3 | 120 | 22976 |
| V | portfolio | v3 | 60 | 21123 |
| E | portfolio | v2 | 60 | 21001 |
| E | portfolio | v3 | 60 | 20799 |
| E | portfolio | v2 | 10 | 20352 |
| E | strat. f17 | v3 | 120 | 19782 |
| E | strat. f17 | v2 | 10 | 19624 |
| V | portfolio | v2 | 60 | 18482 |
| Z | fo-complete-basic | v2 | 10 | 17295 |
| V | portfolio | v2 | 10 | 17160 |
| Z | ho-pragmatic | v2 | 10 | 16115 |
| E | portfolio | v1 | 10 | 11456 |

Table: The complete runs of the systems on the benchmark, ordered by performance. Z is Zipperposition, V is Vampire and E is E .

## HO ATP Evaluation - Greedy Portfolio

| System | mode | version | time (s) | added | sum |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Z | portfolio | v3 | 280 | 25420 | 25420 |
| V | portfolio | v3 | 600 | 960 | 26380 |
| V | portfolio | v3 | 1200 | 415 | 26795 |
| E | portfolio | v3 | 600 | 279 | 27074 |
| Z | portfolio | v2 | 280 | 124 | 27198 |

Table: The top 5 methods in the greedy sequence. Note that we use different (and also high) time limits and that the high-time runs are only done on previously unsolved problems.

## Example: Arithmetic and Geometric Means

- amgm2d:

$$
(A \cdot B)^{\frac{1}{2}} \leq \frac{A+B}{2}
$$

- amgm3d:

$$
(A \cdot B \cdot C)^{\frac{1}{3}} \leq \frac{A+B+C}{3}
$$

- amgm4d:

$$
(A \cdot B \cdot C \cdot D)^{\frac{1}{4}} \leq \frac{A+B+C+D}{4}
$$

- Zipperposition and E can prove the v3 version of each using the following main dependency:
- amgmlem:

$$
\left(\Sigma^{M} F\right)^{\frac{1}{|A|}} \leq \frac{\Sigma^{C} F}{|A|}
$$

- A finite set and
- $F$ function from $A$ to positive reals.


## FO ATP Evaluation

- Vampire, E and Prover9 run for 60 seconds
- Vampire: 15938, E: 15136, P9: 14693
- Likely demonstrates the inefficiency of the current FO encoding compared to the more advanced HO encodings
- Practically none of the standard logical connectives are mapped in a shallow way to their FO TPTP counterparts
- The V, E and P9 performance is similar likely because the problems are Horn and small


## Premise Selection

- On HO v3, Vampire-LTB: 8509, Vampire-HOL: 4013
- Premise selection with k-NN:

| Premises | 10 | 20 | 40 | 80 | 120 | 160 | 240 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| V-thf v3 | 9112 | 10078 | 11060 | 11863 | 12043 | 11997 | 11582 |
| V-fof v1 | 2600 | 4239 | 6294 | 8366 | 9416 | 9875 | 10352 |

## Proof Reconstruction

- Prover9 can produce IVY proof objects
- input (translation of a dependency for the theorem; or part of negation of conclusion)
- instantiate
- resolve
- propositional (e.g., for factoring clauses with repeated literals)
- Note: Each IVY step preserves clauses being Horn
- When translating back to Metamath, using a Horn clause corresponds to applying a dependency in a straightforward way.
- The instantiate steps give the substitution arguments to each Metamath theorem step


## Proof Objects

| Problem | mercolem6 | tgbtwnconn1lem1 | hdmap14lem9 | isoas | Iclkrlem2a |
| :--- | :--- | :--- | :--- | :--- | :--- |
| IVY | 674 | 480 | 392 | 375 | 316 |
| Problem | mercolem6 | mercolem2 | merlem5 | mercolem7 | minimp_sylsimp |
| Metamath | 5660830 | 849 | 77 | 50 | 45 |

Table: Length of the longest proof objects in IVY steps and Metamath lines.

## Proof Blowup

- An outlier is mercolem6, which is a lemma in the proof that Meredith's axiom

$$
((\varphi \rightarrow \psi) \rightarrow(\perp \rightarrow \chi) \rightarrow \theta) \rightarrow(\theta \rightarrow \varphi) \rightarrow \tau \rightarrow \eta \rightarrow \varphi
$$

is complete for propositional logic

- Prover9 is able to return a proof with only 674 lines
- it balloons to 5660830 lines after Metamath reconstruction (over 7 times the size of set.mm)
- This is because if an IVY proof step is applied multiple times with different substitution instances, the subproof is monomorphized for each substitution
- In practice, a human would split out a lemma for this
- In fact, the name mercolem6 indicates that this is lemma 6 of something, so this technique is already being used here.
- but our prover structurally cannot produce proofs with lemmas, so the different cost model between IVY and metamath proofs can produce these pathologies


## Packaging

- The full hammer system is available at https://github.com/digama0/mm-hammer
- The installation script installs all the dependencies (premise selector, Vampire, Prover9)
- The user passes a Metamath theorem statement and it produces an output compressed proof object suitable for insertion in a Metamath database

