AUTOMATED THEOREM PROVING FOR METAMATH

Mario Carneiro, Chad E. Brown and Josef Urban

CMU, Pittsburgh and CTU in Prague

AITP 2023 September 6, 2023

- proof assistant developed by Norman Megill in 1990
- · set.mm its largest library, 40338 theorems in ZFC
- analysis, topology, graph theory, number theory, Hilbert spaces, ...
- small but active community
- minimalist design vs a large library of advanced results
- no tactics and no hammers yet (this work)

Metamath on the Freek Wiedijk's 100 list

Table: Ranking of Proof Assistants as of 2023

Proof Assistant	Score
HOL Light	87
Isabelle	87
Coq	79
Lean	76
Metamath	74
Mizar	69
ProofPower	43
nqthm/ACL2	28
PVS	26
NuPRL/MetaPRL	8

- Metamath = "Metavariable Mathematics"
- Example: $\exists x \cdot x = y$
- x and y may be the same:
- $\exists u.u = v \text{ vs } \exists u.u = u$
- "bundling:" one Metamath theorem represents many α -equivalence classes of theorems.

- MM0 between MM and HOL
- MM0 addresses the bundling issue: one theorem is one $\alpha\text{-equivalence}$ class of theorems in MM0
- · Previous example splits into two MM0 theorems:
- $\exists x.x = y \text{ and } \exists x.x = x$
- Actually:

wex x (wceq (cv x) (cv y))

Metamath Zero to Metamath-HOL

- The HOL version of metamath has three base types:
 - wff (formulas)
 - setvar (sets)
 - · class (classes)
- As usual, we use λ to handle binding.
- Example: $(\forall x. \varphi) \rightarrow \varphi$
- MM0 version is wi (wall x φ) φ where x has type setvar and φ has type wff x.
- MM-HOL version is

```
\forall \varphi : \text{setvar} \rightarrow \text{wff.} \forall x : \text{setvar.} (\text{wi} (\text{wal} (\lambda x : \text{setvar.} \varphi x)) (\varphi x))
```

Three translations from Metamath-HOL to TH0

- We have three translations to TH0.
- They differ in how much of the intended logical semantics we build in.
- In TH0 we reduce to two base types: o (formulas) and ι (sets).
- The type class translates to the type $\iota \rightarrow o$.
- In each case we use the Metamath proof to determine dependencies (what is needed to prove the theorem).
- We only include the dependencies in the corresponding TH0 problems.
- The three translations differ in how various MM-HOL primitives are translated.

Metamath-HOL primitives (v1 translation)

- There are many primitives in the MM-HOL source, e.g.:
 - wi : wff \rightarrow wff \rightarrow wff (implication)
 - wa : wff \rightarrow wff \rightarrow wff (conjunction)
 - wceq : class \rightarrow class \rightarrow wff (equality on classes)
 - wal : (setvar \rightarrow wff) \rightarrow wff (universal quantification)
 - wsb : (setvar \rightarrow wff) \rightarrow (setvar \rightarrow wff) (substitution)
 - cab : (setvar \rightarrow wff) \rightarrow class (class abstraction)
- In the "v1" translation we leave all these as primitives, e.g.:
 - wi : $o \rightarrow o \rightarrow o$
 - wa : $o \rightarrow o \rightarrow o$
 - wceq : $(\iota
 ightarrow o)
 ightarrow (\iota
 ightarrow o)
 ightarrow o$
 - wal : $(\iota \rightarrow o) \rightarrow o$
 - wsb : $(\iota \rightarrow o) \rightarrow (\iota \rightarrow o)$
 - cab : $(\iota \rightarrow o) \rightarrow (\iota \rightarrow o)$
- Note that all the v1 TH0 problems will know about "wi" will be the dependencies of the problem that mention wi.

Metamath-HOL primitives (v2 translation)

- There are many primitives in the MM-HOL source, e.g.:
 - wi : wff \rightarrow wff \rightarrow wff (implication)
 - wa : wff \rightarrow wff \rightarrow wff (conjunction)
 - wceq : class \rightarrow class \rightarrow wff (equality on classes)
 - wal : (setvar \rightarrow wff) \rightarrow wff (universal quantification)
 - wsb : (setvar \rightarrow wff) \rightarrow (setvar \rightarrow wff) (substitution)
 - cab : (setvar \rightarrow wff) \rightarrow class (class abstraction)
- In the "v2" translation we translate logical operators as their TH0 counterparts.
 - wi translates to $\lambda pq : o.p \rightarrow q$.
 - wa translates to $\lambda pq : o.p \land q$.
 - weeq translates to $\lambda XY : \iota \rightarrow o.X = Y$.
 - wal translates to $\lambda p : \iota \rightarrow o. \forall x : \iota.p x$.
- The other primitives are left as in the v1 translation:
 - wsb : $(\iota \rightarrow o) \rightarrow (\iota \rightarrow o)$
 - cab : $(\iota \rightarrow o) \rightarrow (\iota \rightarrow o)$
- Note that given a v2 TH0 problem, an ATP can reason directly about wi as implication.

Metamath-HOL primitives (v3 translation)

- There are many primitives in the MM-HOL source, e.g.:
 - wi : wff \rightarrow wff \rightarrow wff (implication)
 - wa : wff \rightarrow wff \rightarrow wff (conjunction)
 - wceq : class \rightarrow class \rightarrow wff (equality on classes)
 - wal : (setvar \rightarrow wff) \rightarrow wff (universal quantification)
 - wsb : (setvar \rightarrow wff) \rightarrow (setvar \rightarrow wff) (substitution)
 - cab : (setvar \rightarrow wff) \rightarrow class (class abstraction)
- In the "v3" translation modifies the v2 translation to also interpret a number of other primitives.
 - wsb and cab both translate to $\lambda X : \iota \rightarrow o.X$.

Translating Metamath-HOL to First-Order Class Theory

- By treating set variables as objects, we can translate Metamath-HOL into a first-order class theory.
 - Translate wff to a first-order term (a class) and use a predicate *p* to determine if the term corresponding to the wff is "true."
 - Translate a set variable *x_i* in a context *x*₁,..., *x_n* as a constant varⁱ_n.
 - Translate classes as first-order terms.
- We do not include properties of class theory in the first-order ATP problem.
- So: often MM-HOL theorems will translate to FO non-theorems.
- But: All FO translations of MM-HOL yield Horn clauses
- Helps with proof reconstruction (see later)

Higher-order ATP Benchmark

- https://github.com/ai4reason/mm-atp-benchmark
- The three HO versions for the re-proving (small/bushy) problems
- For v3 we also provide the large (hammering/chainy) problems
- The 40338 Metamath theorems expand (via MM0) to 40556 THF theorems/problems
- The 218 extra theorems are those used in their α -degenerate form later in the library
- · A new source of problems for evaluating and improving higher-order ATPs

HO ATP Evaluation

System	mode	version	time (s)	solved
Z	portfolio	v3	280	25420
Z	portfolio	v2	280	24959
V	portfolio	v3	280	23555
Z	portfolio	v2	140	23518
V	portfolio	v3	120	22976
V	portfolio	v3	60	21123
E	portfolio	v2	60	21001
E	portfolio	v3	60	20799
E	portfolio	v2	10	20352
E	strat. f17	v3	120	19782
E	strat. f17	v2	10	19624
V	portfolio	v2	60	18482
Z	fo-complete-basic	v2	10	17295
V	portfolio	v2	10	17160
Z	ho-pragmatic	v2	10	16115
E	portfolio	v1	10	11456

Table: The complete runs of the systems on the benchmark, ordered by performance. Z is Zipperposition, V is Vampire and E is E.

HO ATP Evaluation - Greedy Portfolio

System	mode	version	time (s)	added	sum
Z V V E	portfolio portfolio portfolio portfolio	v3 v3 v3 v3	280 600 1200 600	25420 960 415 279	25420 26380 26795 27074
Z	portfolio	v2	280	124	27198

Table: The top 5 methods in the greedy sequence. Note that we use different (and also high) time limits and that the high-time runs are only done on previously unsolved problems.

Example: Arithmetic and Geometric Means

• amgm2d:

$$(A \cdot B)^{\frac{1}{2}} \leq \frac{A+B}{2}$$

• amgm3d:

$$(A \cdot B \cdot C)^{\frac{1}{3}} \leq \frac{A+B+C}{3}$$

• amgm4d:

$$(A \cdot B \cdot C \cdot D)^{\frac{1}{4}} \leq \frac{A + B + C + D}{4}$$

- Zipperposition and E can prove the v3 version of each using the following main dependency:
- amgmlem:

$$(\Sigma^M F)^{\frac{1}{|A|}} \leq \frac{\Sigma^C F}{|A|}$$

- · A finite set and
- F function from A to positive reals.

- · Vampire, E and Prover9 run for 60 seconds
- Vampire: 15938, E: 15136, P9: 14693
- Likely demonstrates the inefficiency of the current FO encoding compared to the more advanced HO encodings
- Practically none of the standard logical connectives are mapped in a shallow way to their FO TPTP counterparts
- The V, E and P9 performance is similar likely because the problems are Horn and small

- On HO v3, Vampire-LTB: 8509, Vampire-HOL: 4013
- Premise selection with k-NN:

Premises	10	20	40	80	120	160	240
V-thf v3	9112	10078	11060	11863	12043	11997	11582
V-fof v1	2600	4239	6294	8366	9416	9875	10352

Proof Reconstruction

- Prover9 can produce IVY proof objects
 - input (translation of a dependency for the theorem; or part of negation of conclusion)
 - instantiate
 - resolve
 - propositional (e.g., for factoring clauses with repeated literals)
- · Note: Each IVY step preserves clauses being Horn
- When translating back to Metamath, using a Horn clause corresponds to applying a dependency in a straightforward way.
- The instantiate steps give the substitution arguments to each Metamath theorem step

Problem	mercolem6	tgbtwnconn1lem1	hdmap14lem9	isoas	lclkrlem2a
IVY	674	480	392	375	316
Problem	mercolem6	mercolem2	merlem5	mercolem7	minimp_sylsimp
Metamath	5660830	849	77	50	45

Table: Length of the longest proof objects in IVY steps and Metamath lines.

Proof Blowup

• An outlier is mercolem6, which is a lemma in the proof that Meredith's axiom

$$((arphi
ightarrow \psi)
ightarrow (ot
ightarrow \chi)
ightarrow heta)
ightarrow (heta
ightarrow arphi)
ightarrow au
ightarrow \eta
ightarrow arphi$$

is complete for propositional logic

- · Prover9 is able to return a proof with only 674 lines
- it balloons to 5 660 830 lines after Metamath reconstruction (over 7 times the size of set.mm)
- This is because if an IVY proof step is applied multiple times with different substitution instances, the subproof is monomorphized for each substitution
- · In practice, a human would split out a lemma for this
 - In fact, the name mercolem6 indicates that this is lemma 6 of something, so this technique is already being used here.
- but our prover structurally cannot produce proofs with lemmas, so the different cost model between IVY and metamath proofs can produce these pathologies

- The full hammer system is available at https://github.com/digama0/mm-hammer
- The installation script installs all the dependencies (premise selector, Vampire, Prover9)
- The user passes a Metamath theorem statement and it produces an output compressed proof object suitable for insertion in a Metamath database