
AUTOMATED THEOREM PROVING FOR METAMATH

Mario Carneiro, Chad E. Brown and Josef Urban

CMU, Pittsburgh and CTU in Prague

AITP 2023
September 6, 2023

1 / 21

Metamath

� proof assistant developed by Norman Megill in 1990
� set.mm - its largest library, 40338 theorems in ZFC
� analysis, topology, graph theory, number theory, Hilbert spaces, ...
� small but active community
� minimalist design vs a large library of advanced results
� no tactics and no hammers yet (this work)

2 / 21

Metamath on the Freek Wiedijk’s 100 list

Table: Ranking of Proof Assistants as of 2023

Proof Assistant Score
HOL Light 87
Isabelle 87
Coq 79
Lean 76
Metamath 74
Mizar 69
ProofPower 43
nqthm/ACL2 28
PVS 26
NuPRL/MetaPRL 8

3 / 21

Metamath and Bundling

� Metamath = “Metavariable Mathematics”
� Example: 9x :x = y
� x and y may be the same:
� 9u:u = v vs 9u:u = u
� “bundling:” one Metamath theorem represents many �-equivalence

classes of theorems.

4 / 21

Metamath Zero

� MM0 between MM and HOL
� MM0 addresses the bundling issue: one theorem is one �-equivalence

class of theorems in MM0
� Previous example splits into two MM0 theorems:
� 9x :x = y and 9x :x = x
� Actually:

wex x (wceq (cv x) (cv y))

5 / 21

Metamath Zero to Metamath-HOL

� The HOL version of metamath has three base types:
� wff (formulas)
� setvar (sets)
� class (classes)

� As usual, we use � to handle binding.
� Example: (8x :') ! '

� MM0 version is wi (wall x ') ' where x has type setvar and ' has type
wff x .

� MM-HOL version is

8' : setvar ! wff:8x : setvar:(wi (wal (�x : setvar:' x)) ('x))

6 / 21

Three translations from Metamath-HOL to TH0

� We have three translations to TH0.
� They differ in how much of the intended logical semantics we build in.
� In TH0 we reduce to two base types: o (formulas) and � (sets).
� The type class translates to the type �! o.
� In each case we use the Metamath proof to determine dependencies

(what is needed to prove the theorem).
� We only include the dependencies in the corresponding TH0 problems.
� The three translations differ in how various MM-HOL primitives are

translated.

7 / 21

Metamath-HOL primitives (v1 translation)

� There are many primitives in the MM-HOL source, e.g.:
� wi : wff ! wff ! wff (implication)
� wa : wff ! wff ! wff (conjunction)
� wceq : class ! class ! wff (equality on classes)
� wal : (setvar ! wff)! wff (universal quantification)
� wsb : (setvar ! wff)! (setvar ! wff) (substitution)
� cab : (setvar ! wff)! class (class abstraction)

� In the “v1” translation we leave all these as primitives, e.g.:
� wi : o ! o ! o
� wa : o ! o ! o
� wceq : (�! o)! (�! o)! o
� wal : (�! o)! o
� wsb : (�! o)! (�! o)
� cab : (�! o)! (�! o)

� Note that all the v1 TH0 problems will know about “wi” will be the
dependencies of the problem that mention wi.

8 / 21

Metamath-HOL primitives (v2 translation)
� There are many primitives in the MM-HOL source, e.g.:

� wi : wff ! wff ! wff (implication)
� wa : wff ! wff ! wff (conjunction)
� wceq : class ! class ! wff (equality on classes)
� wal : (setvar ! wff)! wff (universal quantification)
� wsb : (setvar ! wff)! (setvar ! wff) (substitution)
� cab : (setvar ! wff)! class (class abstraction)

� In the “v2” translation we translate logical operators as their TH0
counterparts.

� wi translates to �pq : o:p ! q.
� wa translates to �pq : o:p ^ q.
� wceq translates to �XY : �! o:X = Y .
� wal translates to �p : �! o:8x : �:p x .

� The other primitives are left as in the v1 translation:
� wsb : (�! o)! (�! o)
� cab : (�! o)! (�! o)

� Note that given a v2 TH0 problem, an ATP can reason directly about wi
as implication.

9 / 21

Metamath-HOL primitives (v3 translation)

� There are many primitives in the MM-HOL source, e.g.:
� wi : wff ! wff ! wff (implication)
� wa : wff ! wff ! wff (conjunction)
� wceq : class ! class ! wff (equality on classes)
� wal : (setvar ! wff)! wff (universal quantification)
� wsb : (setvar ! wff)! (setvar ! wff) (substitution)
� cab : (setvar ! wff)! class (class abstraction)

� In the “v3” translation modifies the v2 translation to also interpret a
number of other primitives.

� wsb and cab both translate to �X : �! o:X .

10 / 21

Translating Metamath-HOL to First-Order Class
Theory

� By treating set variables as objects, we can translate Metamath-HOL into
a first-order class theory.

� Translate wff to a first-order term (a class) and use a predicate p to
determine if the term corresponding to the wff is “true.”

� Translate a set variable xi in a context x1; : : : ; xn as a constant vari
n.

� Translate classes as first-order terms.

� We do not include properties of class theory in the first-order ATP
problem.

� So: often MM-HOL theorems will translate to FO non-theorems.
� But: All FO translations of MM-HOL yield Horn clauses
� Helps with proof reconstruction (see later)

11 / 21

Higher-order ATP Benchmark

� https://github.com/ai4reason/mm-atp-benchmark

� The three HO versions for the re-proving (small/bushy) problems
� For v3 we also provide the large (hammering/chainy) problems
� The 40338 Metamath theorems expand (via MM0) to 40556 THF

theorems/problems
� The 218 extra theorems are those used in their �-degenerate form later

in the library
� A new source of problems for evaluating and improving higher-order ATPs

12 / 21

https://github.com/ai4reason/mm-atp-benchmark

HO ATP Evaluation

System mode version time (s) solved

Z portfolio v3 280 25420
Z portfolio v2 280 24959
V portfolio v3 280 23555
Z portfolio v2 140 23518
V portfolio v3 120 22976
V portfolio v3 60 21123
E portfolio v2 60 21001
E portfolio v3 60 20799
E portfolio v2 10 20352
E strat. f17 v3 120 19782
E strat. f17 v2 10 19624
V portfolio v2 60 18482
Z fo-complete-basic v2 10 17295
V portfolio v2 10 17160
Z ho-pragmatic v2 10 16115
E portfolio v1 10 11456

Table: The complete runs of the systems on the benchmark, ordered by performance.
Z is Zipperposition, V is Vampire and E is E.

13 / 21

HO ATP Evaluation - Greedy Portfolio

System mode version time (s) added sum

Z portfolio v3 280 25420 25420
V portfolio v3 600 960 26380
V portfolio v3 1200 415 26795
E portfolio v3 600 279 27074
Z portfolio v2 280 124 27198

Table: The top 5 methods in the greedy sequence. Note that we use different (and also
high) time limits and that the high-time runs are only done on previously unsolved
problems.

14 / 21

Example: Arithmetic and Geometric Means

� amgm2d:

(A � B)
1
2 �

A + B
2

� amgm3d:

(A � B � C)
1
3 �

A + B + C
3

� amgm4d:

(A � B � C � D)
1
4 �

A + B + C + D
4

� Zipperposition and E can prove the v3 version of each using the following
main dependency:

� amgmlem:

(ΣMF)
1
jAj �

ΣCF
jAj

� A finite set and
� F function from A to positive reals.

15 / 21

FO ATP Evaluation

� Vampire, E and Prover9 run for 60 seconds
� Vampire: 15938, E: 15136, P9: 14693
� Likely demonstrates the inefficiency of the current FO encoding

compared to the more advanced HO encodings
� Practically none of the standard logical connectives are mapped in a

shallow way to their FO TPTP counterparts
� The V, E and P9 performance is similar likely because the problems are

Horn and small

16 / 21

Premise Selection

� On HO v3, Vampire-LTB: 8509, Vampire-HOL: 4013
� Premise selection with k-NN:

Premises 10 20 40 80 120 160 240

V-thf v3 9112 10078 11060 11863 12043 11997 11582
V-fof v1 2600 4239 6294 8366 9416 9875 10352

17 / 21

Proof Reconstruction

� Prover9 can produce IVY proof objects
� input (translation of a dependency for the theorem; or part of negation of

conclusion)
� instantiate
� resolve
� propositional (e.g., for factoring clauses with repeated literals)

� Note: Each IVY step preserves clauses being Horn
� When translating back to Metamath, using a Horn clause corresponds to

applying a dependency in a straightforward way.
� The instantiate steps give the substitution arguments to each Metamath

theorem step

18 / 21

Proof Objects

Problem mercolem6 tgbtwnconn1lem1 hdmap14lem9 isoas lclkrlem2a
IVY 674 480 392 375 316
Problem mercolem6 mercolem2 merlem5 mercolem7 minimp_sylsimp
Metamath 5660830 849 77 50 45

Table: Length of the longest proof objects in IVY steps and Metamath lines.

19 / 21

Proof Blowup
� An outlier is mercolem6, which is a lemma in the proof that Meredith’s

axiom

(('!) ! (? ! �) ! �) ! (� ! ') ! � ! � ! '

is complete for propositional logic
� Prover9 is able to return a proof with only 674 lines
� it balloons to 5 660 830 lines after Metamath reconstruction (over 7 times

the size of set.mm)
� This is because if an IVY proof step is applied multiple times with different

substitution instances, the subproof is monomorphized for each
substitution

� In practice, a human would split out a lemma for this
� In fact, the name mercolem6 indicates that this is lemma 6 of something, so

this technique is already being used here.
� but our prover structurally cannot produce proofs with lemmas, so the

different cost model between IVY and metamath proofs can produce
these pathologies

20 / 21

Packaging

� The full hammer system is available at
https://github.com/digama0/mm-hammer

� The installation script installs all the dependencies (premise selector,
Vampire, Prover9)

� The user passes a Metamath theorem statement and it produces an
output compressed proof object suitable for insertion in a Metamath
database

21 / 21

https://github.com/digama0/mm-hammer

