Algebraic Machine Reasoning: How inductive reasoning reduces to algebraic computations

8th Conference on Artificial Intelligence and Theorem Proving (AITP 2023)

Speaker: Kai Fong <u>Ernest Chong</u> (Singapore University of Technology and Design)

Based on paper published in CVPR 2023.

SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN

< □ > < @ > < 注 > < 注 > ... 注

Raven's Progressive Matrices (RPMs)

RPMs are well-known visual-based IQ tests, commonly used to measure *abstract reasoning* and *problem-solving* abilities in humans.

- Question matrix (left): 3×3 grid of panels.
 - First 8 panels are filled with geometric entities.
 - 9-th panel is "missing".
- Answer set (right): 8 panels representing 8 possible answer options.
- **Task:** Determine the *correct* answer for the missing 9th panel.
 - The 9 panels should satisfy some abstract patterns/relations.

Crystallized Intelligence vs Fluid Intelligence

Crystallized Intelligence

- Intelligence derived from experience and training.
- Ability to solve problems previously seen before.
- Ability to use knowledge in long-term memory.

What we associate with:

- Stored/learned knowledge (accummulated over time)
- Ontologies, databases
- Requires lots of data and prior knowledge
 - Large statistical models
 - Knowledge graphs
 - Large language models

Fluid Intelligence

- Intelligence derived from mental agility and adaptability.
- Ability to solve novel problems not seen before.
- Ability to infer new relations using short-term memory.

What we associate with:

- Abstract reasoning
 - Logical deductions
 - Discovering new relations
 (e.g. E = mc² by Einstein)
- Problem-solving strategies
- Requires little prior knowledge
 - Raven's progressive matrices

'≣⇒

Logie puzzles <=> <</p>

Algebraic Machine Reasoning (algMR)

A new reasoning framework well-suited for abstract reasoning.

Our framework solves RPMs without needing to optimize performance on task-specific data for reasoning.

Analogy: A gifted child solves RPMs without needing practice on RPMs.

- What's "algebraic" in algebraic machine reasoning?
 - Commutative algebra: e.g. ideals of rings.
 - Computational algebra: e.g. ideal-based algorithms.
- ► Key algebraic ideas in algMR:
 - Define concepts as ideals of a polynomial ring.
 - Inductive reasoning via primary decompositions of ideals.

Reasoning and solving RPMs

Computing the primary decompositions of ideals

イロン 不通 と イヨン イヨン

Surpassing human-level performance on RPMs

Answer set

	Method	Conference	Accuracy
1	ResNet+DRT	CVPR 2019	40.4%
2	LEN	NeurIPS 2019	41.4%
3	Wild ResNet	ICML 2018	44.3%
4	CoPINet	NeurIPS 2019	46.1%
5	DCNet	ICLR 2021	47.0%
6	SRAN	AAAI 2021	60.8%
7	PrAE	CVPR 2021	77.0%
8	algMR (ours)	CVPR 2023	93.2%
	Human	-	84.4%

(日)

A typical RPM instance of the I-RAVEN dataset

(See our paper for more baselines and a detailed breakdown of accuracies by RPM configurations.)

Experiment Results

I-RAVEN dataset: 14,000 RPMs in the test set.

RPMs are generated according to 7 configurations.

Significant accuracy outperformance (directly from raw RPM images).

► +16.2% **improvement** over previous state-of-the-art accuracy.

Surpasses human-level performance (+8.8% higher).

What is an ideal?

Polynomial ring R = ℝ[x₁,...,x_n]. Set of all polynomials in variables x₁,...,x_n with real coefficients. This set, together with addition and multiplication, forms a ring. A monomial is a polynomial with a single term with coefficient 1. A subset I ⊆ R is called an ideal of R if there are polynomials g₁,...,g_k in R such that

$$I = \{f_1g_1 + \cdots + f_kg_k | f_1, \ldots, f_k \in R\}$$

contains all polynomial combinations of g_1, \ldots, g_k .

- We say that $\mathcal{G} = \{g_1, \ldots, g_k\}$ is a generating set for *I*.
- Notation: $I = \langle g_1, \ldots, g_k \rangle$ or $I = \langle \mathcal{G} \rangle$.
- Note: Every ideal has infinitely many possible generating sets.
- Basic operations on ideals: sums, products, intersections.
- A monomial ideal is an ideal that has a generating set that consists only of monomials.

Definition: A concept of *R* is a monomial ideal of *R*.

Examples of concepts

Suppose $R = \mathbb{R}[x_{red}, x_{blue}, x_{circle}, x_{square}]$.

- Primitive concepts: Concepts generated by a single variable.
 - $\langle x_{\text{red}} \rangle$ is the concept "red".
 - $\langle x_{blue} \rangle$ is the concept "blue".
 - $\langle x_{\text{circle}} \rangle$ is the concept "circle".
 - $\langle x_{square} \rangle$ is the concept "square".
- **Note:** $\langle x_{red} \rangle$ contains several concepts:
 - $\langle x_{\text{red}} \rangle \supseteq \langle x_{\text{red}} x_{\text{circle}} \rangle$ ("red circle").
 - $\langle x_{\text{red}} \rangle \supseteq \langle x_{\text{red}} x_{\text{square}} \rangle$ ("red square").
 - ► $\langle x_{\text{red}} \rangle \supseteq \langle x_{\text{red}} x_{\text{circle}}, x_{\text{red}} x_{\text{square}} \rangle$ ("either a red circle or a red square").
- ► **Example:** $J = \langle x_{\text{red}} x_{\text{circle}}, x_{\text{red}} x_{\text{square}}, x_{\text{blue}} x_{\text{circle}}, x_{\text{blue}} x_{\text{square}} \rangle \subseteq R.$
 - We can "decompose" J as $J = \langle x_{red}, x_{blue} \rangle \cap \langle x_{circle}, x_{square} \rangle$.
 - Intuitively, (x_{red}, x_{blue}) and (x_{circle}, x_{square}) are concepts that are simpler than concept J.

Why define concepts as ideals?

1) To capture the expressiveness of human reasoning.

- We can construct infinitely many concepts from only finitely many primitive concepts. (See Theorem 3.1 of our paper.)
- The "richer" structure of ideals allows more operations, beyond set-theoretic operations. (See Section 4 of our paper.)
- In contrast to logic-based reasoning, we do not assign truth values (or numerical values) to variables. (See Appendix C.1 of our paper.)

2) For compatibility with *concept theory* in cognitive science.

- Compositional structure of concepts. (See Appendix A.4.2 of our paper.)
 - Important aspect of human experience in learning new concepts.
 - Concepts can be decomposed into intersections of ideals.
- Essence of concepts.
 - Concepts in terms of features: defining features vs irrelevant features.
 - Monomial ideals have computable unique "minimal generating sets".
- Concepts with partial definitions. (See Appendix A.4.2 of our paper.)
 - Humans can still reason with concepts that have partial definitions.
 - RPM task: Partial definition of (x_{square}) ("entity with four sides").

(See Appendix A.4.2 of our paper.)

Attribute concepts

Idea: In human cognition, semantically similar concepts are naturally grouped to form a more general concept.

- Example: Concepts such as "red", "green", "blue", "yellow" can be grouped to form a new concept representing "color".
 - ▶ If $R = \mathbb{R}[x_{\text{red}}, x_{\text{green}}, x_{\text{blue}}, x_{\text{yellow}}]$, then the ideal $J \subseteq R$ given by $J = \langle x_{\text{red}}, x_{\text{green}}, x_{\text{blue}}, x_{\text{yellow}} \rangle$ is a concept that could mean "color".

Intuition: An attribute concept is a concept constructed by combining primitive concepts that represent "attribute values".

- Example: (x_{red}), (x_{green}), (x_{blue}), (x_{yellow}) are primitive concepts representing "attribute values" of the attribute concept J representing "color".
- To solve a reasoning task, we first need to identify task-specific attribute concepts.

RPM task: Attribute concepts "num", "pos", "type", "color", "size".
 Inductive Bias: A concept representing a pattern shall be deemed meaningful if it is contained in some attribute concept.

What are primary decompositions?

Idea: Every ideal J has a **decomposition** $J = K_1 \cap \cdots \cap K_s$ as an intersection of finitely many primary ideals.

- This intersection is called a primary decomposition of J.
 - \blacktriangleright The constituent primary ideals K_i are called primary components.
 - ▶ If *J* is a monomial ideal, then there is a **unique** "minimal" primary decomposition pd(J) that we can compute.

Reasoning via primary decompositions:

A common pattern of concept J_1, \ldots, J_k is a concept K containing J_1, \ldots, J_k . If there are several common patterns K_1, \ldots, K_r , then we have:

 $J_1 = K_1 \cap \cdots \cap K_r \cap K'_1;$ $J_2 = K_1 \cap \cdots \cap K_r \cap K'_2;$ $J_{k} = K_{1} \cap \cdots \cap K_{r} \cap K'_{k}.$

- Algebraic problem: Compute common components K₁,..., K_r.
 Compute pd(J₁),..., pd(J_k), then extract the common primary components K₁,..., K_r.
 The new concept K₁ O ··· O K_r can be interpreted as a
 - The new concept $K_1 \cap \cdots \cap K_r$ can be interpreted as a common pattern of J_1, \ldots, J_k .

Overview of algMR framework for solving RPMs

Perception Stage: Algebraic representation

- Every (i, j)-th panel is represented as a concept J_{i,j}.
 - Raw perceptual attribute values are obtained from object detection models.
 - Each entity is encoded as a generator of $J_{i,j}$ (e.g. $x_{\text{small}}x_{\text{black}}x_{\text{square}}$).

Reasoning Stage: Algebraic machine reasoning

- Pattern extraction via four invariance modules.
 - (1) intra-invariance module, (2) inter-invariance module,
 - (3) compositional invariance module, (4) binary-operator invariance module
- Intuition: They check for 4 general types of invariances across a sequence of concepts.

Based on computing $pd(J_{i,j})$ and solving ideal-based problems.

Generative reasoning for RPMs

Our framework can generate answers with just the question matrix!

Top row: Given answers of randomly selected RPM instances. Bottom row: Generated answers of respective RPM instances.

(See Section 3.4.2 of our paper for more details.)

イロト イボト イヨト イヨト

- Intuition: Patterns extracted via the invariance modules can be used to "inversely" compute what the "correct answer" is.
 - Our generated answers achieved avg. similarity score of 67.7%.

- 3

RPM task: Discovering new patterns

Example: An RPM with an unexpected new pattern discovered.

• Our algMR framework selects both b and h as equally valid answers.

- Given answer is option *h*.
 - Row-wise: Number of entities in first 2 panels sum up to number of entities in 3rd panel.
- Option b is also valid!
 - New discovered pattern: Every panel has either 1 or 2 entities.

イロト 不得 トイヨト イヨト 三日

Beyond RPMs: Other reasoning tasks

Algebraic machine reasoning is well-suited for inductive reasoning.

- Generalizable Idea: "Discovering patterns" is realized concretely as "computing primary decompositions".
- Can be easily combined with any perception models.
 - Primitive concepts depend solely on what the machine can perceive.
 - e.g. object classes of its object detection models.
 - Perception need not be visual!
 - Can be tokens/words "perceived" by LLMs.
 - Can be abstract: e.g. robot's representation of environment.

13

More complicated reasoning tasks (e.g. automated theorem proving) require a mix of crystallized intelligence and fluid intelligence.

- ▶ We have LLMs for crystallized intelligence!
 - Even better if combined with knowledge bases!
- ▶ We have logic programming (LP) and its various extensions!
- Exciting possibilities: LLMs + databases + LP + algMR

Explainable Reasoning: Entire reasoning process is verifiable.

Intermediate reasoning steps directly from algebraic computations.

NOTE: algMR is inherently not search-based.

Concepts: Beyond ideals of polynomial rings

Given an ideal *I* of the polynomial ring $S = \mathbb{R}[x_1, \ldots, x_n]$, we can construct a quotient ring R = S/I.

The elements of the quotient ring R are cosets of I.

- A coset of *I* is a subset of *S* of the form *p* + *I* := {*p* + *q*|*q* ∈ *I*} for some polynomial *p* ∈ *S*.
- This polynomial p is called a coset representative of p + I.

Convention: We write this coset simply as p.

- **Example:** If $R = \mathbb{R}[x_1, x_2]/\langle x_1 x_2 \rangle$, then $\overline{x_1}$ and $\overline{x_2}$ are the exact same element in R.
- A subset J ⊆ R is called an ideal of R if there are cosets g₁,..., g_k in R such that

$$J=\{f_1g_1+\cdots+f_kg_k|f_1,\ldots,f_k\in R\},\$$

- We say that $\mathcal{G} = \{g_1, \ldots, g_k\}$ is a generating set for J.
- If $g_1 = \overline{m_1}, \ldots, g_k = \overline{m_k}$ for some monomials m_1, \ldots, m_k in S, then we say that J is a monomial ideal.

Extended Definition: A concept of *R* is a monomial ideal of *R*.

Final Remarks

Current state: Lots of work in intersection of automated reasoning and computational algebra (think: Gröbner bases and SMT).

With algMR, we have established a **new connection** between machine reasoning and commutative algebra (think: ideals as objects).

- Over a century's worth of deep results in commutative algebra.
 - Lots of algebraic operations on ideals we have not used.
 - e.g. ideal quotients, radicals, saturations, symbolic powers, etc.
 - Lots of non-search-based algebraic algorithms.
 - Question: Can we use them to extend reasoning capabilities?
- So far: Concepts are monomial ideals of polynomial/quotient rings.
 - ▶ monomial ideals ~→ arbitrary ideals.
 - Coefficient field $\mathbb{R} \rightsquigarrow$ any Noetherian ring.

Know someone who might want to join the team?

- We are looking for research assistants, PhD students, and post-docs who are passionate about algebraic methods in AI.
 - Those with strong algebraic backgrounds are prioritized.
 - If you are interested, please directly contact Ernest Chong at ernest_chong@sutd.edu.sg

Thank you!

Tushar Vaidya

Yufei Wu

000

Saket Chandra Zhangsheng Lai Ernest Chong

≣ । ह