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Raven’s Progressive Matrices (RPMs)

RPMs are well-known visual-based IQ tests, commonly used to measure
abstract reasoning and problem-solving abilities in humans.
I Question matrix (left): 3× 3 grid of panels.

I First 8 panels are filled with geometric entities.
I 9-th panel is “missing”.

I Answer set (right): 8 panels representing 8 possible answer options.
I Task: Determine the correct answer for the missing 9th panel.

I The 9 panels should satisfy some abstract patterns/relations.
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Crystallized Intelligence vs Fluid Intelligence
Crystallized Intelligence
I Intelligence derived from

experience and training.
I Ability to solve problems

previously seen before.
I Ability to use knowledge

in long-term memory.

Fluid Intelligence
I Intelligence derived from mental

agility and adaptability.
I Ability to solve novel problems

not seen before.
I Ability to infer new relations

using short-term memory.

What we associate with:
I Stored/learned knowledge

(accummulated over time)
I Ontologies, databases
I Requires lots of data and

prior knowledge
I Large statistical models
I Knowledge graphs
I Large language models

What we associate with:
I Abstract reasoning

I Logical deductions
I Discovering new relations

(e.g. E = mc2 by Einstein)
I Problem-solving strategies
I Requires little prior knowledge

I Raven’s progressive matrices
I Logic puzzles
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Algebraic Machine Reasoning (algMR)
A new reasoning framework well-suited for abstract reasoning.

difficult process of
novel problem-solving reduce to

.
routine algebraic

computations.

I Our framework solves RPMs without needing to optimize
performance on task-specific data for reasoning.
I Analogy: A gifted child solves RPMs without needing practice on RPMs.

I What’s “algebraic” in algebraic machine reasoning?
I Commutative algebra: e.g. ideals of rings.
I Computational algebra: e.g. ideal-based algorithms.

I Key algebraic ideas in algMR:
I Define concepts as ideals of a polynomial ring.
I Inductive reasoning via primary decompositions of ideals.

I We solve RPMs effectively as computational problems in algebra!
Reasoning and
solving RPMs becomes

.
Computing the primary
decompositions of ideals
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Surpassing human-level performance on RPMs

A typical RPM instance of the I-RAVEN dataset

Method Conference Accuracy
1 ResNet+DRT CVPR 2019 40.4%
2 LEN NeurIPS 2019 41.4%
3 Wild ResNet ICML 2018 44.3%
4 CoPINet NeurIPS 2019 46.1%
5 DCNet ICLR 2021 47.0%
6 SRAN AAAI 2021 60.8%
7 PrAE CVPR 2021 77.0%
8 algMR (ours) CVPR 2023 93.2%

Human - 84.4%

(See our paper for more baselines and a detailed breakdown of accuracies by RPM configurations.)

Experiment Results
I I-RAVEN dataset: 14,000 RPMs in the test set.

I RPMs are generated according to 7 configurations.
I Significant accuracy outperformance (directly from raw RPM images).

I +16.2% improvement over previous state-of-the-art accuracy.
I Surpasses human-level performance (+8.8% higher).
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What is an ideal?
I Polynomial ring R = R[x1, . . . , xn].

I Set of all polynomials in variables x1, . . . , xn with real coefficients.
I This set, together with addition and multiplication, forms a ring.
I A monomial is a polynomial with a single term with coefficient 1.

I A subset I ⊆ R is called an ideal of R if there are polynomials
g1, . . . , gk in R such that

I = {f1g1 + · · ·+ fkgk |f1, . . . , fk ∈ R}

contains all polynomial combinations of g1, . . . , gk .
I We say that G = {g1, . . . , gk} is a generating set for I.
I Notation: I = 〈g1, . . . , gk〉 or I = 〈G〉.
I Note: Every ideal has infinitely many possible generating sets.
I Basic operations on ideals: sums, products, intersections.

I A monomial ideal is an ideal that has a generating set that
consists only of monomials.

Definition: A concept of R is a monomial ideal of R.
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Examples of concepts

Suppose R = R[xred, xblue, xcircle, xsquare].
I Primitive concepts: Concepts generated by a single variable.

I 〈xred〉 is the concept “red”.
I 〈xblue〉 is the concept “blue”.
I 〈xcircle〉 is the concept “circle”.
I 〈xsquare〉 is the concept “square”.

I Note: 〈xred〉 contains several concepts:
I 〈xred〉 ⊇ 〈xredxcircle〉 (“red circle”).
I 〈xred〉 ⊇ 〈xredxsquare〉 (“red square”).
I 〈xred〉 ⊇ 〈xredxcircle, xredxsquare〉 (“either a red circle or a red square”).

I Example: J = 〈xredxcircle, xredxsquare, xbluexcircle, xbluexsquare〉 ⊆ R.
I We can “decompose” J as J = 〈xred, xblue〉 ∩ 〈xcircle, xsquare〉.
I Intuitively, 〈xred, xblue〉 and 〈xcircle, xsquare〉 are concepts that are

simpler than concept J .
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Why define concepts as ideals?
1) To capture the expressiveness of human reasoning.
I We can construct infinitely many concepts from only finitely

many primitive concepts. (See Theorem 3.1 of our paper.)

I The “richer” structure of ideals allows more operations,
beyond set-theoretic operations. (See Section 4 of our paper.)

I In contrast to logic-based reasoning, we do not assign truth values
(or numerical values) to variables. (See Appendix C.1 of our paper.)

2) For compatibility with concept theory in cognitive science.
I Compositional structure of concepts. (See Appendix A.4.2 of our paper.)

I Important aspect of human experience in learning new concepts.
I Concepts can be decomposed into intersections of ideals.

I Essence of concepts. (See Appendix A.4.2 of our paper.)

I Concepts in terms of features: defining features vs irrelevant features.
I Monomial ideals have computable unique “minimal generating sets”.

I Concepts with partial definitions. (See Appendix A.4.2 of our paper.)

I Humans can still reason with concepts that have partial definitions.
I RPM task: Partial definition of 〈xsquare〉 (“entity with four sides”).
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Attribute concepts

Idea: In human cognition, semantically similar concepts are naturally
grouped to form a more general concept.
I Example: Concepts such as “red”, “green”, “blue”, “yellow”

can be grouped to form a new concept representing “color”.
I If R = R[xred, xgreen, xblue, xyellow], then the ideal J ⊆ R given by

J = 〈xred, xgreen, xblue, xyellow〉 is a concept that could mean “color”.

Intuition: An attribute concept is a concept constructed by combining
primitive concepts that represent “attribute values”.
I Example: 〈xred〉, 〈xgreen〉, 〈xblue〉, 〈xyellow〉 are primitive concepts representing

“attribute values” of the attribute concept J representing “color”.
I To solve a reasoning task, we first need to identify task-specific

attribute concepts.
I RPM task: Attribute concepts “num”, “pos”, “type”, “color”, “size”.

Inductive Bias: A concept representing a pattern shall be deemed
meaningful if it is contained in some attribute concept.
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What are primary decompositions?
Idea: Every ideal J has a decomposition J = K1 ∩ · · · ∩ Ks as an
intersection of finitely many primary ideals.
I This intersection is called a primary decomposition of J .

I The constituent primary ideals Ki are called primary components.
I If J is a monomial ideal, then there is a unique “minimal”

primary decomposition pd(J) that we can compute.
Reasoning via primary decompositions:
I A common pattern of concept J1, . . . , Jk is a concept K

containing J1, . . . , Jk .
I If there are several common patterns K1, . . . , Kr , then we have:

J1 = K1 ∩ · · · ∩ Kr ∩ K ′
1;

J2 = K1 ∩ · · · ∩ Kr ∩ K ′
2;

...
...

Jk = K1 ∩ · · · ∩ Kr ∩ K ′
k .

I Algebraic problem: Compute common components K1, . . . , Kr .
I Compute pd(J1), . . . , pd(Jk), then extract the common primary

components K1, . . . , Kr .
I The new concept K1 ∩ · · · ∩ Kr can be interpreted as a

common pattern of J1, . . . , Jk .
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Overview of algMR framework for solving RPMs

Perception Stage: Algebraic representation
I Every (i , j)-th panel is represented as a concept Ji ,j .

I Raw perceptual attribute values are obtained from object detection models.
I Each entity is encoded as a generator of Ji,j (e.g. xsmallxblackxsquare).

Reasoning Stage: Algebraic machine reasoning
I Pattern extraction via four invariance modules.

(1) intra-invariance module, (2) inter-invariance module,
(3) compositional invariance module, (4) binary-operator invariance module.

I Intuition: They check for 4 general types of invariances across
a sequence of concepts.
I Based on computing pd(Ji,j ) and solving ideal-based problems.
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Generative reasoning for RPMs

Our framework can generate answers with just the question matrix!

Top row: Given answers of randomly selected RPM instances.
Bottom row: Generated answers of respective RPM instances.

(See Section 3.4.2 of our paper for more details.)

I Intuition: Patterns extracted via the invariance modules can
be used to “inversely” compute what the “correct answer” is.
I Our generated answers achieved avg. similarity score of 67.7%.
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RPM task: Discovering new patterns

Example: An RPM with an unexpected new pattern discovered.
I Our algMR framework selects both b and h as equally valid answers.

I Given answer is option h.
I Row-wise: Number of entities in first 2 panels sum up to

number of entities in 3rd panel.
I Option b is also valid!

I New discovered pattern: Every panel has either 1 or 2 entities.
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Beyond RPMs: Other reasoning tasks
Algebraic machine reasoning is well-suited for inductive reasoning.
I Generalizable Idea: “Discovering patterns” is realized concretely

as “computing primary decompositions”.
I Can be easily combined with any perception models.

I Primitive concepts depend solely on what the machine can perceive.
I e.g. object classes of its object detection models.

I Perception need not be visual!
I Can be tokens/words “perceived” by LLMs.
I Can be abstract: e.g. robot’s representation of environment.

More complicated reasoning tasks (e.g. automated theorem proving)
require a mix of crystallized intelligence and fluid intelligence.
I We have LLMs for crystallized intelligence!

I Even better if combined with knowledge bases!
I We have logic programming (LP) and its various extensions!
I Exciting possibilities: LLMs + databases + LP + algMR

Explainable Reasoning: Entire reasoning process is verifiable.
I Intermediate reasoning steps directly from algebraic computations.

I NOTE: algMR is inherently not search-based. 13



Concepts: Beyond ideals of polynomial rings
Given an ideal I of the polynomial ring S = R[x1, . . . , xn], we can
construct a quotient ring R = S/I.
I The elements of the quotient ring R are cosets of I.

I A coset of I is a subset of S of the form p + I := {p + q|q ∈ I}
for some polynomial p ∈ S.

I This polynomial p is called a coset representative of p + I.
I Convention: We write this coset simply as p.

I Example: If R = R[x1, x2]/〈x1 − x2〉, then x1 and x2 are the
exact same element in R.

I A subset J ⊆ R is called an ideal of R if there are cosets
g1, . . . , gk in R such that

J = {f1g1 + · · ·+ fkgk |f1, . . . , fk ∈ R},
I We say that G = {g1, . . . , gk} is a generating set for J .
I If g1 = m1, . . . , gk = mk for some monomials m1, . . . , mk in S,

then we say that J is a monomial ideal.

Extended Definition: A concept of R is a monomial ideal of R.
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Final Remarks
Current state: Lots of work in intersection of automated reasoning
and computational algebra (think: Gröbner bases and SMT).

With algMR, we have established a new connection between
machine reasoning and commutative algebra (think: ideals as objects).
I Over a century’s worth of deep results in commutative algebra.

I Lots of algebraic operations on ideals we have not used.
I e.g. ideal quotients, radicals, saturations, symbolic powers, etc.

I Lots of non-search-based algebraic algorithms.
I Question: Can we use them to extend reasoning capabilities?

So far: Concepts are monomial ideals of polynomial/quotient rings.
I monomial ideals  arbitrary ideals.
I Coefficient field R  any Noetherian ring.

Know someone who might want to join the team?
I We are looking for research assistants, PhD students, and

post-docs who are passionate about algebraic methods in AI.
I Those with strong algebraic backgrounds are prioritized.
I If you are interested, please directly contact Ernest Chong at

ernest chong@sutd.edu.sg 15



Thank you!
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