
1/12

Robust Strategy Schedule Optimization for an
Automatic Theorem Prover

Filip Bártek and Martin Suda

Czech Technical University in Prague, Czech Republic

AITP, September 2023

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire

many, many ways to configure the search for a proof
one such configuration = strategy
“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy
it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)
many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire
many, many ways to configure the search for a proof

one such configuration = strategy
“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy
it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)
many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire
many, many ways to configure the search for a proof
one such configuration = strategy

“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy
it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)
many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire
many, many ways to configure the search for a proof
one such configuration = strategy
“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy
it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)
many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire
many, many ways to configure the search for a proof
one such configuration = strategy
“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy

it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)
many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire
many, many ways to configure the search for a proof
one such configuration = strategy
“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy
it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)

many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire
many, many ways to configure the search for a proof
one such configuration = strategy
“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy
it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)
many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

1/12

ATPs and Strategies

State-of-the-art automatic theorem provers for FOL:
e.g.: E, iProver, Vampire
many, many ways to configure the search for a proof
one such configuration = strategy
“We define a strategy by fixing values of proof search options”

Already Gandalf [Tammet98] knew that:
there is no single best universal strategy
it pays off to prepare a whole schedule of strategies to try on
a problem and execute them in succession (or in parallel)
many short runs of complementary strategies will usually beat
a single long run of a in-theory-complete single strategy

DEMO: ./vampire Problems/PUZ/PUZ039-1.p

2/12

CASC 2022 Competition Result Summary (partial)

SnakeForV4.7: a strategy discovery and schedule construction tool
applied to Vampire 4.7

(and running in demonstration-only mode)

2/12

CASC 2022 Competition Result Summary (partial)

SnakeForV4.7: a strategy discovery and schedule construction tool
applied to Vampire 4.7 (and running in demonstration-only mode)

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:

tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems

locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)

once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems

poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:

Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!

Don’t bother with any form of ML-powered “strategy selection”

3/12

A Tribute to Spider

Spider [Voronkov2013]

“Spider was used since 2010 and has been a secret weapon behind
Vampire’s success at the CASC competitions.”

What we know about Spider:
tries out random strategies to solve medium to hard problems
locally optimizes a strategy just for its problem
(preferring default values where the choice seems irrelevant)
once done, evaluates a strategy on all problems
poses schedule construction as an optimization problem:
“Cover all known-to-be-solvable problems by a subset of
strategies with their time limits summing up to ≤ K .”

General mindset:
Computationally not cheap: get some CPUs and use them!
Don’t bother with any form of ML-powered “strategy selection”

4/12

So who is the Snake?

Our (my and Filip’s) story:

Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years
CASC schedule of Vampire 4.7 used in 2022 was from 2019!
so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?
stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

4/12

So who is the Snake?

Our (my and Filip’s) story:
Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years

CASC schedule of Vampire 4.7 used in 2022 was from 2019!
so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?
stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

4/12

So who is the Snake?

Our (my and Filip’s) story:
Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years
CASC schedule of Vampire 4.7 used in 2022 was from 2019!

so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?
stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

4/12

So who is the Snake?

Our (my and Filip’s) story:
Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years
CASC schedule of Vampire 4.7 used in 2022 was from 2019!
so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?
stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

4/12

So who is the Snake?

Our (my and Filip’s) story:
Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years
CASC schedule of Vampire 4.7 used in 2022 was from 2019!
so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?

stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

4/12

So who is the Snake?

Our (my and Filip’s) story:
Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years
CASC schedule of Vampire 4.7 used in 2022 was from 2019!
so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?
stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

4/12

So who is the Snake?

Our (my and Filip’s) story:
Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years
CASC schedule of Vampire 4.7 used in 2022 was from 2019!
so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?
stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

4/12

So who is the Snake?

Our (my and Filip’s) story:
Andrei, as the sole operator of Spider, was getting increasingly
busy with EasyChair in recent recent years
CASC schedule of Vampire 4.7 used in 2022 was from 2019!
so we decided to develop our own tool to try out new ideas
and gain flexibility / independence

What’s new in Snake?
stochastic view of strategies treated as Las Vegas algorithms

local strategy improvement with many random probes

greedy weighted cover for the schedule creation phase

5/12

So who is the Snake?

∗Illustration by Sibylle Ortner, used with permission.

5/12

So who is the Snake?

∗Illustration by Sibylle Ortner, used with permission.

6/12

Warning: CASC’s TPTP problems threatened to be shuffled!

A 2019 experiment
Use tptp4X -trandomize from the TPTP toolset to:

randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems? (with a single strategy)

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

Can now be invoked from Vampire (--shuffle_input on)
as well as “internal” shuffling (--random_traversals on)

6/12

Warning: CASC’s TPTP problems threatened to be shuffled!

A 2019 experiment
Use tptp4X -trandomize from the TPTP toolset to:

randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems? (with a single strategy)

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

Can now be invoked from Vampire (--shuffle_input on)
as well as “internal” shuffling (--random_traversals on)

6/12

Warning: CASC’s TPTP problems threatened to be shuffled!

A 2019 experiment
Use tptp4X -trandomize from the TPTP toolset to:

randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems? (with a single strategy)

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

Can now be invoked from Vampire (--shuffle_input on)
as well as “internal” shuffling (--random_traversals on)

6/12

Warning: CASC’s TPTP problems threatened to be shuffled!

A 2019 experiment
Use tptp4X -trandomize from the TPTP toolset to:

randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems? (with a single strategy)

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

Can now be invoked from Vampire (--shuffle_input on)
as well as “internal” shuffling (--random_traversals on)

6/12

Warning: CASC’s TPTP problems threatened to be shuffled!

A 2019 experiment
Use tptp4X -trandomize from the TPTP toolset to:

randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems? (with a single strategy)

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

Can now be invoked from Vampire (--shuffle_input on)
as well as “internal” shuffling (--random_traversals on)

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space

∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios

not simply a cartesian product:
dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options

conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations

(please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?

What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?

Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!

Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?

focus on yet unsolved ones
focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones

focus on speeding up the best known solution

7/12

Step 1: Random Strategies to Discover New Solutions

Our Strategy Space
∼ 100 options: bool, categorical, numerical, ratios
not simply a cartesian product:

dependent options
conflicting combinations (please avoid “forbidden clauses”)

How to sample good random strategies?
What does it mean in the first place?
Uniform was good enough. But expert knowledge helps!
Something more principled: open research (mini)topic

➥ Snake: shuffling is on and we sample --random_seed

How to pick the next problem?
focus on yet unsolved ones
focus on speeding up the best known solution

8/12

Step 2: Improve the Strategy on its Problem

Local search for strategy improvement
vary one option at a time
iterate over all (non-default) options for several rounds

Optimization criteria
1 does the probability of solving the problem improve?
2 does the time to solve the problem improve?
3 does the new value look more reasonable?

DEMO: protocol.txt

8/12

Step 2: Improve the Strategy on its Problem

Local search for strategy improvement
vary one option at a time
iterate over all (non-default) options for several rounds

Optimization criteria

1 does the probability of solving the problem improve?
2 does the time to solve the problem improve?
3 does the new value look more reasonable?

DEMO: protocol.txt

8/12

Step 2: Improve the Strategy on its Problem

Local search for strategy improvement
vary one option at a time
iterate over all (non-default) options for several rounds

Optimization criteria
1 does the probability of solving the problem improve?

2 does the time to solve the problem improve?
3 does the new value look more reasonable?

DEMO: protocol.txt

8/12

Step 2: Improve the Strategy on its Problem

Local search for strategy improvement
vary one option at a time
iterate over all (non-default) options for several rounds

Optimization criteria
1 does the probability of solving the problem improve?
2 does the time to solve the problem improve?

3 does the new value look more reasonable?

DEMO: protocol.txt

8/12

Step 2: Improve the Strategy on its Problem

Local search for strategy improvement
vary one option at a time
iterate over all (non-default) options for several rounds

Optimization criteria
1 does the probability of solving the problem improve?
2 does the time to solve the problem improve?
3 does the new value look more reasonable?

DEMO: protocol.txt

8/12

Step 2: Improve the Strategy on its Problem

Local search for strategy improvement
vary one option at a time
iterate over all (non-default) options for several rounds

Optimization criteria
1 does the probability of solving the problem improve?
2 does the time to solve the problem improve?
3 does the new value look more reasonable?

DEMO: protocol.txt

9/12

DEMO cont.: an AWR Plot

10/12

Step 3: Schedule Construction

So now we have all the discovered strategies evaluated on all the
problems of interest: E s

p , for s ∈ Strats and p ∈ Probs.

Weighted set cover formulation:
define sets: S(s,i) = {p∥E s

p ≤ i} with weights w(s,i) = i

problems covered by a schedule S: c(S) =
⋃

(s,i)∈S S(s,i)

task: find a schedule S covering all solvable problems:

c(S) =
⋃

s∈Strats

{p∥E s
p < ∞},

minimizing the cost
∑

(s,i)∈S w(s,i)

Greedy Weighted Set Cover

Starting with the empty schedule S = ∅
Loop adding to S an (s, i) maximizing |S(s,i) \ c(S)|/w(s,i)

10/12

Step 3: Schedule Construction

So now we have all the discovered strategies evaluated on all the
problems of interest: E s

p , for s ∈ Strats and p ∈ Probs.

Weighted set cover formulation:
define sets: S(s,i) = {p∥E s

p ≤ i} with weights w(s,i) = i

problems covered by a schedule S: c(S) =
⋃

(s,i)∈S S(s,i)

task: find a schedule S covering all solvable problems:

c(S) =
⋃

s∈Strats

{p∥E s
p < ∞},

minimizing the cost
∑

(s,i)∈S w(s,i)

Greedy Weighted Set Cover

Starting with the empty schedule S = ∅
Loop adding to S an (s, i) maximizing |S(s,i) \ c(S)|/w(s,i)

10/12

Step 3: Schedule Construction

So now we have all the discovered strategies evaluated on all the
problems of interest: E s

p , for s ∈ Strats and p ∈ Probs.

Weighted set cover formulation:
define sets: S(s,i) = {p∥E s

p ≤ i} with weights w(s,i) = i

problems covered by a schedule S: c(S) =
⋃

(s,i)∈S S(s,i)

task: find a schedule S covering all solvable problems:

c(S) =
⋃

s∈Strats

{p∥E s
p < ∞},

minimizing the cost
∑

(s,i)∈S w(s,i)

Greedy Weighted Set Cover

Starting with the empty schedule S = ∅
Loop adding to S an (s, i) maximizing |S(s,i) \ c(S)|/w(s,i)

10/12

Step 3: Schedule Construction

So now we have all the discovered strategies evaluated on all the
problems of interest: E s

p , for s ∈ Strats and p ∈ Probs.

Weighted set cover formulation:
define sets: S(s,i) = {p∥E s

p ≤ i} with weights w(s,i) = i

problems covered by a schedule S: c(S) =
⋃

(s,i)∈S S(s,i)

task: find a schedule S covering all solvable problems:

c(S) =
⋃

s∈Strats

{p∥E s
p < ∞},

minimizing the cost
∑

(s,i)∈S w(s,i)

Greedy Weighted Set Cover

Starting with the empty schedule S = ∅
Loop adding to S an (s, i) maximizing |S(s,i) \ c(S)|/w(s,i)

10/12

Step 3: Schedule Construction

So now we have all the discovered strategies evaluated on all the
problems of interest: E s

p , for s ∈ Strats and p ∈ Probs.

Weighted set cover formulation:
define sets: S(s,i) = {p∥E s

p ≤ i} with weights w(s,i) = i

problems covered by a schedule S: c(S) =
⋃

(s,i)∈S S(s,i)

task: find a schedule S covering all solvable problems:

c(S) =
⋃

s∈Strats

{p∥E s
p < ∞},

minimizing the cost
∑

(s,i)∈S w(s,i)

Greedy Weighted Set Cover

Starting with the empty schedule S = ∅
Loop adding to S an (s, i) maximizing |S(s,i) \ c(S)|/w(s,i)

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:

If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data: e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data: e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N

(starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data: e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)

and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data: e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data: e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule

Collect more data: e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data:

e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data: e.g., (s, i) solves p with probability 0.8

Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

11/12

Greedy Weighted Set Cover – “Advanced Topics”

Some observations:
If, at the end, both (s, i) ∈ S and (s, j) ∈ S for i < j ,
we can drop (s, i) since, after all, S(s,i) ⊆ S(s,j)

Redefine schedule to S : Strats → N (starting as constant 0)
and adapt the costs as we go:

if S(s) = i then set w(s,j) = max(0, j − i)

Actually, can aim to construct a “probabilistic” schedule
Collect more data: e.g., (s, i) solves p with probability 0.8
Assuming strategy independence: if current S solves p with
prob. 0.5, adding (s, i) to S will improve by 0.8 · 0.5 to 0.9

12/12

Wrapping Up

Strategy schedules substantially boost prover performance

the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!

then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?

CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy!

(Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)

We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises.

(Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?

randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”

greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover

(by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")

should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

12/12

Wrapping Up

Strategy schedules substantially boost prover performance
the “best known solutions” keep improving for very very long!
then just evaluate everywhere and optimize out a schedule

Are we just memorising solutions to win CASC?
CASC is easy! (Can cover all known solvable in 8*120s easily!)
We don’t know how well this generalises. (Ablations needed!)

Spider was doing this for years now!

How could Snake be more robust?
randomization during minimization (the step 2) tends to make
a strategy s robustly successful on its p

probabilistic schedule more robust as it is playing against
(and not with) “the shuffler”
greedy weighted set cover (by the way, notice it is "anytime")
should have harder time overfitting than an optimal schedule

Thank you!

13/12

One more experiment with randomness

Clause Selection and Age-weight Ratio
Vampire alternates between selecting the next given clause by age
(old first) and by weight (light first) under a given ratio.

Normally, this alternation is regular. What if we change it to
probabilistic?

configuration solved uniques additional
base 8725 12 8725
rnd1 8747 8 91
rnd2 8744 16 37
rnd3 8768 23 37
rnd4 8735 14 21
rnd5 8741 16 16

base = -sa discount -awr 1:1 -t 10

13/12

One more experiment with randomness

Clause Selection and Age-weight Ratio
Vampire alternates between selecting the next given clause by age
(old first) and by weight (light first) under a given ratio.

Normally, this alternation is regular. What if we change it to
probabilistic?

configuration solved uniques additional
base 8725 12 8725
rnd1 8747 8 91
rnd2 8744 16 37
rnd3 8768 23 37
rnd4 8735 14 21
rnd5 8741 16 16

base = -sa discount -awr 1:1 -t 10

13/12

One more experiment with randomness

Clause Selection and Age-weight Ratio
Vampire alternates between selecting the next given clause by age
(old first) and by weight (light first) under a given ratio.

Normally, this alternation is regular. What if we change it to
probabilistic?

configuration solved uniques additional
base 8725 12 8725
rnd1 8747 8 91
rnd2 8744 16 37
rnd3 8768 23 37
rnd4 8735 14 21
rnd5 8741 16 16

base = -sa discount -awr 1:1 -t 10

14/12

Related work

Related work ATP:
MaLeS [Kühlwein&Urban, 2015]
BliStr → BliStrTune → EmpireTune → Grackle
[Urban, Jakubův, . . .]
HOS-ML [Holden& Korovin, 2021]
Genetic breeding [Schäfer and Schulz, 2015]

Related work SMT:
MachSMT [Scott et al., 2021]

Related work algorithm configuration etc:
[Hoos,Hutter,. . .]

	Appendix

