REASONING OR SPURIOUS CORRELATIONS? APPLYING TRANSFORMERS TO PROPOSITIONAL LOGIC

DANIEL ENSTRÖM, VIKTOR KJELLBERG, MOA JOHANSSON

UNIVERSITY OF GOTHENBURG / CHALMERS UNIVERSITY OF TECHNOLOGY

REASONING OR SPURIOUS CORRELATIONS? APPLYING TRANSFORMERS TO PROPOSITIONAL LOGIC

Presentation overview

- The dataset SimpleLogic extended with proofs
- Brief overview of the two architectures
- Results in terms of model accuracy and consistency
- Qualitative analysis of the errors of the best performing architecture

Daniel Enström

SIMPLELOGIC – A DATASET OF SATISIFIABILITY PROBLEMS

QUERY: serious?

RULES: impatient \rightarrow serious gifted \land silly \rightarrow inexpensive bright \land light \rightarrow silly crowded \rightarrow light

.... evil \rightarrow fancy

FACTS: zealous crowded gifted agreeable evil

SimpleLogic

The three datasets are generated in different ways

- Label-Priority (LP)
 - Truth-value of literals sampled first
- Rule-Priority (RP)
 - Rules sampled first
- Rule-Priority Balanced (RP_b)
 - Like RP, but without the "number of rules" statistical feature

SimpleLogic

Number of rules feature

Number of rules

- An example of a statistical feature is the "number of rules" feature
- This feature is present in RP but removed in RP_b

Replication of Zhang et. al (2022)

TRAIN	TEST	0	1	2	3	4	5	6	TOTAL
RP	RP	99.8	100.0	99.4	98.9	98.6	96.9	95.9	98.5
RP	RP_b	99.2	99.2	98.6	98.0	96.6	93.9	89.1	96.4
RP	LP	99.9	99.9	99.0	94.3	83.8	65.6	50.0	84.7
RP_b	RP	99.8	99.9	99.5	98.9	98.6	97.9	96.9	98.8
RP_b	RP_b	99.6	99.5	99.0	98.4	98.0	96.7	94.1	97.9
RP_b	LP	99.7	99.4	99.3	96.4	87.6	72.6	57.2	87.5

EVALUATION

- Accuracy
- Consistency
 - I.e. combination of soundness and completeness

MODELS USED

- Whole Proof BART (WP-BART)
 - Generates the proof as ONE SINGLE output-sequence from BART
- Symbolic Iterative Proof BART (SIP-BART)
 - Generates the proof step by step
 - The final proof is an aggregation of all generated steps

WP-BART

- A generative BART architecture
- Three models were trained
 - One for each of the respective datasets
- Training proofs generated with backward chaining
 - i.e. starting from the query
- Evaluated primarily on accuracy

sunny ^ rainy→ rainbow light_outside → sunny light_outside rainy True

WP-BART

TRAIN	TEST	TOTAL		
LP	RP	80.6		
LP	RP_b	81.4		
LP	LP	93.9		
RP	RP	84.5		
RP	RP_b	85.5		
RP	LP	75.2		
RP_b	RP	88.7		
RP_b	RP_b	89.9		
RP_b	LP	83.2		

WP-BART RESULTS

RP_b LP 87.5

CLASSIFIER BENCHMARK TRAIN TEST TOTAL LP \mathbf{RP} 75.0RP_b 72.7LPLP LP98.6RP RP 98.5RP_b RP 96.4 RP LP 84.7 RP_b RP 98.8RP_b RP b 97.9LP87.5

SIP-BART

- Symbolic Iterative Proof BART (SIP-BART)
- A combination of a neural module with a symbolic (rulebased) module
- The neural module is responsible to find the next applicable rule
- The symbolic module is just a short program that processes the output from the neural module and updates the input accordingly

SIP-BART

- Evaluated by accuracy,
 - On the predicted truth-value only (not the entire proof)
 - Each dataset and all problem depths
- As well as consistency of proofs

Viktor Kjellberg

TRAIN	TEST	0	1	2	3	4	5	6	TOTAL
LP	LP	99.94	100.	99.97	100.	100.	100.	100.	99.98
LP	RP	99.97	99.97	100.	99.92	99.90	99.872	99.49	99.87
LP	RP_b	100.	99.97	99.97	99.89	99.94	99.74	99.25	99.81
RP	LP	99.97	100.	100.	100.	100.	100.	100.	99.99
RP	RP	100.	100.	100.	100.	100.	100.	99.97	99.99
RP	RP_b	100.	100.	100.	100.	100.	100.	100.	100.
RP_b	LP	99.97	100.	99.97	100.	100.	100.	100.	99.99
RP_b	RP	99.94	100.	100.	100.	99.97	99.97	99.97	99.98
RP_b	RP_b	100.	100.	100.	100.	100.	99.97	100.	99.99

TRAIN	TEST	0	1	2	3	4	5	6	TOTAL
LP	RP	97.4	92.5	64.5	60.2	67.6	72.6	69.9	75.0
LP	RP_b	97.7	93.3	60.2	56.7	63.9	68.7	68.5	72.7
LP	LP	99.8	99.8	99.8	99.6	98.8	97.2	95.4	98.6
RP	RP	99.8	100.0	99.4	98.9	98.6	96.9	95.9	98.5
RP	RP_b	99.2	99.2	98.6	98.0	96.6	93.9	89.1	96.4
RP	LP	99.9	99.9	99.0	94.3	83.8	65.6	50.0	84.7
RP_b	RP	99.8	99.9	99.5	98.9	98.6	97.9	96.9	98.8
RP_b	RP_b	99.6	99.5	99.0	98.4	98.0	96.7	94.1	97.9
RP_b	LP	99.7	99.4	99.3	96.4	87.6	72.6	57.2	87.5

Benchmark

SIP-BART

All model are able to achieve an almost perfect accuracy across all test data.

Viktor Kjellberg

CONSISTENCY (PROOF-CORRECTNESS)

Nonexisting Rule

- Inapplicable Rule
- Spurious Match
- Unexhausted Search Space

Train	Test	Error	Total
		Rate	Consis-
			tency
LP	LP	0.046	99.954
LP	RP	0.686	99.314
LP	RP_b	0.889	99.111
RP	LP	0.025	99.975
RP	RP	0.029	99.971
RP	RP_b	0.039	99.961
RP_b	LP	0.018	99.982
RP_b	RP	0.061	99.939
RP_b	RP_b	0.039	99.961

NONEXISTING RULE

The generated rule does not exist

 I.e. the rule in the BART output does not exist in the list of rules in the original problem description

Reasons:

- The model has committed a synonym-error. A similar word in meaning or a synonym was generated instead of the literal used in the original problem
- Only part of a rule was generated one or more conditions are missing

INAPPLICABLE RULE

- A generated rule can not be applied
 - If a generated rule does exist in the list of rules but the conditions for this rule can't be satisfied
- Reasons:
 - A part of a rule has been confused as a fact. This happens because the input is a string of the query, rules and facts

SPURIOUS MATCH

- If the query does not exist in the facts and therefore has not been satisfied
- Reasons:
 - A synonym from the facts or the generated proof steps are confused as the query. A consequence of using a pre-trained model

UNEXHAUSED SEARCH SPACE

- A consistent proof for a False problem that reaches the end is per definition complete
- If the whole search space has been exhausted and there is no longer any rules that can be applied
- No clear patterns why this appears more that it seems to miss one applicable rule

CONSISTENCY (PROOF-CORRECTNESS)

- Nonexisting rule is the most common error for all models
- Nonexisting Rule and Inapplicable Rule are relevant for both True and False predicted proofs.
- Spurious Match is only relevant for proofs predicted True
- Unexhausted Search is only relevant for proofs predicted False

Train	Test	Non-	Inapp-	Spur-	Unex-	Error	Total
		$\mathbf{existing}$	licable	ious	hausted	Rate	Consis-
		Rule	Rule	Match	Search		\mathbf{tency}
LP	LP	0.036	0.	0.007	0.004	0.046	99.954
LP	RP	0.661	0.	0.004	0.021	0.686	99.314
LP	RP_b	0.868	0.	0.	0.021	0.889	99.111
RP	LP	0.018	0.004	0.004	0.	0.025	99.975
RP	RP	0.007	0.018	0.	0.004	0.029	99.971
RP	RP_b	0.021	0.014	0.004	0.	0.039	99.961
RP_b	LP	0.011	0.	0.004	0.004	0.018	99.982
RP_b	RP	0.032	0.011	0.007	0.011	0.061	99.939
RP_b	RP_b	0.025	0.007	0.004	0.004	0.039	99.961

SUMMARY

- The SIP-BART models were able to achieve a high accuracy and consistency score.
- Almost all errors can be contributed to the use of a pretrained BART model and the inherent attention mechanism of Transformers.

