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Deductivist Approach:
• Hides the struggle, hides the adventure


• Disconnect between concepts, entities, axioms, theorems and proofs; 
i.e., discovery and justification


• Has an authoritarian air


• Focus on soundness rather than understandability



Automated Theorem Proving:
• Hides the struggle, hides the adventure


• Disconnect between concepts, entities, axioms, theorems and proofs; 
i.e., discovery and justification


• Has an authoritarian air


• Focus on soundness rather than understandability



At an event in 2012 organised by Martin and Pease, leading 
mathematicians flagged the importance of collaborative systems 
that “think like a mathematician”, handle unstructured 
approaches such as the use of “sloppy” natural language and the 
exchange of informal knowledge and intuition not recorded in 
papers, and engage diverse researchers in creative problem 
solving. This accords with work of cognitive scientists, 
sociologists, philosophers and the narrative accounts of 
mathematicians themselves, which highlight the paradoxical 
nature of mathematical practice — while the goal of 
mathematics is to discover mathematical truths justified by 
rigorous argument, mathematical discovery involves “soft” 
aspects such as creativity, informal argument, example, error and 
analogy.

events.inf.ed.ac.uk/sicsa-mcp/



“if we wish to teach computers to find proofs, it is likely to 
be a good idea to reflect on how we do so ourselves.”

W. T. Gowers. Rough structure and classification. GAFA (Geometric And 
Functional Analysis), Special volume – GAFA2000(1–0), 2000.



How do humans do mathematics?

• What are the patterns of communication? 


• What do they talk about?


• How do they explain things?


• What do they value?


• How do they use examples?



Research 
Question

How do 
mathematicians 
communicate?

What do 
mathematicians  

talk about?

How do 
mathematicians 
explain things?

What do 
mathematicians 

value?

How do 
mathematicians 
use examples?

Data

Euler’s 
characteristic 

(1750) and 
Cauchy’s proof 

(1811)

Methodology rational 
reconstruction

grounded theory

(data-driven)

analysis of 
keywords and 

random sampling

(theory-driven)

keyword search

grounded theory; 
user testing; 

machine learning

(triangulation)

Results A set of 
heuristics

A typology of 
comments, with 
hierarchy and 
timestamps

A set of 
hypotheses with 

support or 
attacks

Comparison 
between values 
in the front and 
back stage

A theory of 
example-use

Computational 
System

HRL; TM; 
Lakatos Games — — — EgBot



Features of our approach

• Empirical data - usually online fora


• “Everyday” mathematics


• Collaborative mathematics


• “Backstage” mathematics (cf Hersh)


• A range of methodologies — including data-driven, theory-driven, user-
driven, using a computational lens to test and extend



The nature of mathematical collaboration is changing

• Online forums and blogs for informal mathematical 
discussion reveal some of the ‘back’ of mathematics: 
‘mathematics as it appears among working 
mathematicians, in informal settings, told to one 
another in an office behind closed doors’

Hersh, R. (1991). Mathematics has a front and a back. Synthese, 88:127–133.

• ‘it has provided, for possibly the first time ever 
(though I may well be wrong about this), the first fully 
documented account of how a serious research 
problem was solved, complete with false starts, dead 

• A number of senior mathematicians produce influential and widely read blogs.


• Discussion fora allow rapid informal interaction and problem-solving


• Online forums and blogs for informal mathematical discussion reveal some of the ‘back’ 
of mathematics: 


‘mathematics as it appears among working mathematicians, in informal settings, told to one 
another in an office behind closed doors’ 

Hersh, R. (1991). Mathematics has a front and a back. Synthese, 88:127–133. 

‘it has provided, for possibly the first time ever (though I may well be wrong about this), 
the first fully documented account of how a serious research problem was solved, 

complete with false starts, dead ends etc.’  
Gowers, T. (2009). Polymath1 and open collaborative mathematics. http://gowers.wordpress.com/2009/03/10/. 



Frontstage mathematics



Backstage mathematics



“Is this data representative 
of mathematical practice?”



“Is this data representative 
of mathematical practice?”

What is mathematical practice?



“Is this data representative 
of mathematical practice?”

1.  There is no single mathematical practice:  


• Inglis challenges ‘Assumption of homogeneity’ with empirical studies into whether 
there is agreement between mathematicians on proof validity and appraisal


• Diversity in mathematical practice recognised by conferences on mathematical 
cultures and practices (Larvor, 2016), by the ethnomathematics community, 
philosophical notions, such as mathematical style (Mancosu, 2009), etc.


2. The IMO is a mathematical practice:   


• It seems reasonable to assume that the Olympiad ‘culture’ may be regarded as 
background for a significant fraction of the world's professional pure mathematicians.




“Is this data representative 
of mathematical practice?”

Features of MPM culture:


- Trust: participants trust that the conjecture is a theorem and that there is a 
(findable) solution


- Variety: the number of collaborators and their range of mathematical experience, 
ability and knowledge may well be larger/wider than in other collaborative settings


- Medium: online fora mean that participants only communicate via typed 
comments in a very structured space - no diagrams, scribbles, gestures, 
intonation, ….




1. Patterns of communication

In collaboration with Alan Smaill (University of Edinburgh) 

and Simon Colton (Imperial College London)



1. For all polyhedra, V-E+F=2
        For all polyhedra, except those with cavities, V-E+F=2

2. For all polyhedra, V-E+F=2
        For all convex polyhedra, V-E+F=2

1. Is the system a faithful model of the theory? 

     (Evaluation of system) 
2.  What has the computational perspective taught us? 

     (Evaluation of theory) 



1. For all polyhedra, V-E+F=2
        For all polyhedra, except those with cavities, V-E+F=2

2. For all polyhedra, V-E+F=2
        For all convex polyhedra, V-E+F=2

1. Is the system a faithful model of the theory? 

     (Evaluation of system) 
2.  What has the computational perspective taught us? 

     (Evaluation of theory) 





HRL: Extending Simon Colton’s HR System
Example interaction protocol



Illustrative Example 1: set-up

Student 1: integers 0 − 10 and core concepts integers, divisors and 
multiplication. Propose to monster-bar if an entity is a culprit breaker. Agree a 
proposal to monster-bar if the entity is a counterexample to more than 15% of 
its conjectures.


Student 2: integers 1 − 10 and core concepts integers, divisors and 
multiplication. Set to use monster-barring as Student 1


The teacher requested the students to work independently for 20 theory 
formation steps and then send their best non-existence  conjecture for 
discussion. 


•



Illustrative Example 1: results
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Illustrative Example 1: results

Student 2: There do not exist integers a, b such that b + a = a and a + b = a


Teacher: Does anyone have any counterexamples to this conjecture?


 




Illustrative Example 1: results

Student 2: There do not exist integers a, b such that b + a = a and a + b = a


Teacher: Does anyone have any counterexamples to this conjecture?


Student 1: All of my entities (0-10) are counterexamples to this conjecture 




Illustrative Example 1: results

Student 2: There do not exist integers a, b such that b + a = a and a + b = a


Teacher: Does anyone have any counterexamples to this conjecture?


Student 1: All of my entities (0-10) are counterexamples to this conjecture 


Teacher: How do you both respond to the counterexamples? 



Illustrative Example 1: results

Student 2: There do not exist integers a, b such that b + a = a and a + b = a


Teacher: Does anyone have any counterexamples to this conjecture?


Student 1: All of my entities (0-10) are counterexamples to this conjecture 


Teacher: How do you both respond to the counterexamples?


Student 1: [tests to see whether there was a single ‘culprit’ entity which is forcing all of 
its entities to be counterexamples, and found 0] I propose to monster-bar the number 0. 



Illustrative Example 1: results

Student 2: There do not exist integers a, b such that b + a = a and a + b = a


Teacher: Does anyone have any counterexamples to this conjecture?


Student 1: All of my entities (0-10) are counterexamples to this conjecture 


Teacher: How do you both respond to the counterexamples?


Student 1: [tests to see whether there was a single ‘culprit’ entity which is forcing all of 
its entities to be counterexamples, and found 0] I  propose to monster-bar the number 0. 

Student 2: [finds that 0 breaks 63% of its conjectures]  I agree we should bar it




Illustrative Example 1: results

Student 2: There do not exist integers a, b such that b + a = a and a + b = a


Teacher: Does anyone have any counterexamples to this conjecture?


Student 1: All of my entities (0-10) are counterexamples to this conjecture 


Teacher: How do you both respond to the counterexamples?


Student 1: [tests to see whether there was a single ‘culprit’ entity which is forcing all of 
its entities to be counterexamples, and found 0] I  propose to monster-bar the number 0. 

Student 2: [finds that 0 breaks 63% of its conjectures]  I agree we should bar it


Teacher: Okay, please down-grade 0 to a pseudo-entity in your theories.



Illustrative Example 2: set-up

Student 1: integers 1 − 10, core concepts integer, divisor and multiplication.


Student 2: integers 11 − 50, same core concepts


Student 3: integers 51 − 60, same core concepts


The teacher requested the students to work independently for 20 theory 
formation steps and then send their best implication  conjecture for discussion.



Illustrative Example 2: results

Student 3: all integers have an even number of divisors




Illustrative Example 2: results

Student 3: all integers have an even number of divisors


Student 1: [1,4,9] are counterexamples




Illustrative Example 2: results

Student 3: all integers have an even number of divisors


Student 1: [1,4,9] are counterexamples


Student 2: [16, 25, 36, 49] are counterexamples.




Illustrative Example 2: results

Student 3: all integers have an even number of divisors


Student 1: [1,4,9] are counterexamples


Student 2: [16, 25, 36, 49] are counterexamples.


Student 1: [finds concept of squares and formed the new concept non-
squares]: We can modify Student 3's conjecture to all non-squares have an 
even number of divisors.



Representing the proof



Challenges
• How do we know when we should surrender a conjecture?


• How can we computationally represent ill-defined or ambiguous concepts?


• When should we perform monster-barring?


• How can we apply exception-barring to different types of conjecture?


• How can we represent an informal proof in our system?


• How can a computer program uncover hidden assumptions in a proof? 


• How can we formalise the surprise we feel when an example behaves in an unexpected 
manner in a proof? 


• Given a counterexample, how can a computer program determine whether it is global or local?


• How can a computer program perform local/global/hidden lemma incorporation? 



Two further interpretations of Lakatos’s Proof and Refutations



Theorem Modifier (TM)

S. Colton and A. Pease "The TM System for Repairing Non-Theorems” Selected papers from the IJCAR'04 disproving workshop, Electronic Notes in 
Theoretical Computer Science, Volume 125(3). Elsevier, 2005



TM

• From TPTP library we invented 91 non-theorems. TM produced valid 
modifications for 83% of them, with an average of 3.1 modifications per non-
theorem.


• Eg: Given non-theorem all groups are Abelian, TM produces all self-inverse 
groups are Abelian



Proofs and Refutations as a Dialogue Game

• Theoretical model: we interpret the informal logic of mathematical discovery 
proposed by Lakatos, a philosopher of mathematics, through the lens of dialogue 
game theory and in particular as a dialogue game ranging over structures of 
argumentation (locution rules, structural rules, commitment rules, termination rules and 
outcome rules).


• Abstraction level: we develop structured arguments, from which we induce abstract 
argumentation systems and compute the argumentation semantics to provide 
labelings of the acceptability status of each argument. The output from this stage 
corresponds to a final, or currently accepted proof artefact, which can be viewed 
alongside its historical development.


• Computational model: we show how each of these formal steps is available in 
implementation

A Pease, J Lawrence, K Budzynska, J Corneli,  Reed. Lakatos-style collaborative mathematics through 
dialectical, structured and abstract argumentation. Artificial Intelligence. Vol 246, 2017. pp181-219.

https://www.sciencedirect.com/science/journal/00043702


Are Lakatos’s patterns of communication found in the real world?
Example 1





P is equivalent to P’
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counterexample.
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P is not equivalent to P’. Here is a 
counterexample.

P is equivalent to P’’



P is equivalent to P’

P is not equivalent to P’. Here is a 
counterexample.

P is equivalent to P’’

I surrender - it is not the case that 
P is equivalent to P’



Are Lakatos’s patterns of communication found in the real world?
Example 2





Isn’t X a 
counterexample?



Isn’t X a 
counterexample?



Isn’t X a 
counterexample?

No, X is not valid 
because…



Isn’t X a 
counterexample?

No, X is not valid 
because…



Isn’t X a 
counterexample?

No, X is not valid 
because…

Ah yes, I’ll revise my 
concept definition



Lessons for ATP

• It is possible to give a computational reading of Lakatos’s Proofs and 
Refutations, including very “human”, messy aspects such as ambiguity, 
hidden assumptions, surprise, … This offers flexibility to ATP and 
suggests ways of bringing it closer to “human” mathematics



Lessons for ATP

• We can fine-tune the methods and test parameters and methods to see 
which ones result in interesting theories. Eg, how to distribute data between 
the students; how many independent work phases, how long; how and when 
to perform the methods


• A computational model also allows us to evaluate extended computational 
theory of mathematical discovery according to philosophically interesting 
criteria such as generality, explanatory power and non-circularity


• Collaborative patterns such as Lakatos’s Proofs Refutations can be found in 
real world mathematics, although can be less useful than he described


• Errors and ambiguities can be productive (but might not be)



2. What do mathematicians talk about?
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What do mathematicians talk about?

• Question 2 of the 2011 IMO. 


• Tao posted the problem at 8pm on July 19th, 2011, having posted in advance that he would do 
so. 


• The relevant websites are the research thread for the problem solving process, a discussion 
thread for meta-discussion about the project, and a wiki page for a summary of the problem and 
discussion.


• Solved over a period of 74 minutes by 27 participants through 174 comments on 27 comment 
threads.


• Course-grained analysis to develop a typology of comments

A.  Pease  and  U.  Martin.   Seventy  four  minutes  of  mathematics:  An  analysis  of  the  third  mini-
polymath project.  In Proc AISB Symp on Mathematical Practice and Cognition II pages 19-29, 2012.




Let S be a finite set of at least two points in the plane. 
Assume that no three points of S are collinear. A windmill 
is a process that starts with a line l going through a single 
point P ∈ S. The line rotates clockwise about the pivot P 
until the first time that the line meets some other point Q 
belonging to S. This point Q takes over as the new pivot, 
and the line now rotates clockwise about Q, until it next 
meets a point of S. This process continues indefinitely. 
Show that we can choose a point P in S and a line l going 
through P such that the resulting windmill uses each point 
of S as a pivot infinitely many times.



A typology of comments 

Concepts: 

Since the points are in general position, you 
could define “the wheel of p”, w(p) to be radial 
sequence of all the other points p’!=p around p. 
Then, every transition from a point p to q will 
“set the windmill in a particular spot” in q. This 
device tries to clarify that the new point in a 
windmill sequence depends (only) on the two 
previous points of the sequence. 



A typology of comments 

Examples: 

If the points form a convex polygon, it is easy.



A typology of comments 

Conjectures:  

One can start with any point (since every point 
of S should be pivot infinitely often), the direction 
of line that one starts with however matters! 

Perhaps even the line does not matter! Is it 
possible to prove that any point and any line will 
do? 



A typology of comments 

Proof:

The first point and line P0, l0 cannot be chosen so that 
P0 is on the boundary of the convex hull of S and l0 
picks out an adjacent point on the convex hull. 
Maybe the strategy should be to take out the 
convex hull of S from consideration; follow it up 
by induction on removing successive convex hulls.



A typology of comments 

Other: 

I think that is a good start, thanks Varun!

@Thomas @Seungly @Haggai Thank you all 
for your examples. I haven’t understood 
them fully yet; I’ll think about them for some 
time and get back if I have questions.

Yes, it seems to be a correct solution! 



A typology of comments 

10%

14%

20%

23%

33%

Examples Other Conjecture Proof Concept



A typology of comments 



2. What do mathematicians talk about?

1. Broad stroke analysis

2. Fine-grained analysis



A fine-grained analysis 

• Similar - more in depth - analysis of the first 
MPM, posted  in 2009


• Used software for Grounded Theory 
“dedoose" to create hierarchies of tags 


• Tagged  559 excerpts














Lessons for ATP
• Mathematicians talk about many aspects other than proof: concepts, 

conjectures, examples, social mechanisms, explanations


• These are introduced at different points in a proof attempt, for different 
reasons



3. How do mathematicians 
explain things?



Source Material: 
Mini-Polymath Data



Methodology
Explanation-indicator approach (EIA): Close content analysis 
of an complete search over four mathematical conversations, 
based on the presence of explanation indicators: “since”; 
“because”; “, as” (premise); “thus”; “therefore”; “, so” 
(conclusion); “expla*”; “underst*” (explanation).


Stage 1: Automated complete indicator search 


Stage 2: Close content analysis of each indicator instance - the 
entire comment and surrounding comments, using cues from 
these to try to determine whether explanation played a role


Stage 3: Close content analysis according to our dimensions of 
explanation



Methodology
Random comment approach (RCA): designed to pick out 
explanations which might not contain any of our explanation 
indicators. We analysed a random 10% of our corpora of 742 
comments. The analysis followed similar stages to the EIA:


Stage 1: Select a comment at random and discount it if it 
contains an explanation indicator 


Stage 2: Close content analysis of the entire comment and 
comments around it, using cues from these to try to determine 
whether explanation played a role


Stage 3: Close content analysis according to our dimensions of 
explanation



Methodology
Contextual considerations in Stage 3: From sentence, comment and 
surrounding comments, we:


- identify the explanans (the explanation) and the explanandum (the 
phenomenon to be explained)


- consider whether there is a corresponding why-question (possibly implicit)  


- consider whether there is a clear difference of level (general or specific) 
between the explanandum and explanans which might be seen in terms of a 
unifying feature. 


- ask whether the keyword occurred in the context of object-level, meta-level 
or deep (additional context) explanation 


- consider what the context of the proof is, what sort of thing is being 
explained, and what sort of explanation is offered 



Individual context



Mathematical context



Social context

Walton (2000) p336



Findings
• EIA: On average, 33% of comments contained one 

indicator, of which we classified 72% as relating to 
explanation. This gives 23% of the whole conversation as 
relating to explanation. 


• RCA: Of the remaining 67% of the conversation which did 
not contain an indicator, we classified 21% of a random 
sample as relating to explanation.This gives a further 14% 
of the whole conversation.


• This gives a combined total of 37%. Explanation here 
formed an important part of the mathematical conversation. 



Findings



 The Individual Context:    
Does the explanation use purposive words?

15%

20%

32%

34%

value understanding ability knowledge



The Mathematical Context:  
 What kind of mathematical object does the explanation concern? 

6%
6%

8%

17%

18%
19%

27%

assertion property proof example representation argument
initial problem



The Social Context:  
In what sort of dialogue does the explanation take place?  

1%
6%

9%

22%
62%

Inquiry Pedagogical Persuasion Information-seeking
Deliberation



Findings
• There is a tradition of explanation in mathematical practice. 


• All explanations are answers to why-questions. 


• Explanation does not occur primarily as an appeal to a higher level of generality. 


• Explanations can be categorised as either trace explanations, strategic 
explanations, or deep explanations. 


• Explanations in mathematics contain purposive elements. 


• Explanations can occur in many mathematical contexts. 


• Explanations in mathematics are a social phenomenon. 



Lessons for ATP

• take into account who is explaining and to whom


• occur in many mathematical contexts and concern many types of 
mathematical object


• occur throughout a proof attempt (not just at the end)

• Explanation is very common in mathematical discourse (accounting 
for nearly 2/5’s of the conversation).


• Explanations in maths: 



Conclusions 
1: Look at the backstage

• Computer support for mathematics, such as computer algebra or 
computational mathematics, has typically been for the frontstage. A 
second approach is to focus on the backstage and to try to extract 
principles which are sufficiently clear as to allow an algorithmic 
interpretation.


• The mechanisms by which research mathematics progresses -- as messy, 
fallible, and speculative as this may be -- can usefully be studied via analysis of 
informal mathematics.


• The study of mathematical practice, via philosophy and sociology of 
mathematical practice provides an excellent starting point for this work.



Conclusions 
2: Consider the wider context

• New mathematical knowledge is more than new 
mathematical proofs. Conjecture and concept generation are 
subject to rationality as well as proof, and therefore systems 
can be developed which integrate these theory-development 
aspects alongside proof generation.



Conclusions 
3: Consider social aspects

• Mathematics is social.


• Extending the power and reach of MathOverflow or Polymath 
through a combination of people and machines raises new 
challenges for artificial intelligence and computational 
mathematics.



Conclusions 
3: Consider social aspects

• Likely mathematical elements of a mathematics social machine would 
include the following:


• Databases of examples, perhaps incorporating user tagging, and also of 
being able to mine libraries for data and deductions beyond the immediate 
facts they record.


• Technology for going beyond the linear structure to capture the more 
complex structure of a proof attempt, or to represent diagrams.


• Automated theory formation systems which automatically invent concepts 
and conjectures.


• The importance of collaborative systems that “think like a mathematician”
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