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APPENDIX 2

THE DEDUCTIVIST VERSUS THE
HEURISTIC APPROACH

1. The Deductivist Approach

Euclidean methodology has developed a certain obligatory style of
presentation. I shall refer to this as “deductivist style’. This style starts
with a painstakingly stated list of axioms, lemmas and|/or definitions. The
axioms and definitions frequently look artificial and mystifyingly
complicated. One is never told how these complications arose. The
list of axioms and definitions is followed by the carefully worded
theorems. These are loaded with heavy-going conditions; it seems im-
possible that anyone should ever have guessed them. The theorem is
followed by the proof.

The student of mathematics is obliged, according to the Euclidean
ritual, to attend this conjuring act without asking questions either about
the background or about how this sleight-of-hand is performed. If
the student by chance discovers that some of the unseemly definitions
are proof-generated, if he simply wonders how these definitions,
lemmas and the theorem can possibly precede the proof, the conjuror
will ostracize him for this display of mathematical immaturity.!

In deductivist style, all propositions are true and all inferences valid.
Mathematics is presented as an ever-increasing set of eternal, immutable
truths. Counterexamples, refutations, criticism cannot possibly enter.
An authoritarian air is secured for the subject by beginning with dis-
guised monster-barring and proof-generated definitions and with the
fully-fledged theorem, and by suppressing the primitive conjecture,
the refutations, and the criticism of the proof. Deductivist style hides
the struggle, hides the adventure. The whole story vanishes, the
successive tentative formulations of the theorem in the course of the
proof-procedure are doomed to oblivion while the end result is

exalted into sacred infallibility.2



Deductivist Approach:

* Hides the struggle, hides the adventure

 Disconnect between concepts, entities, axioms, theorems and proofs;
l.e., discovery and justification

e Has an authoritarian air

* Focus on soundness rather than understandability



Automated Theorem Proving:

* Hides the struggle, hides the adventure

 Disconnect between concepts, entities, axioms, theorems and proofs;
l.e., discovery and justification

e Has an authoritarian air

* Focus on soundness rather than understandability



At an event in 2012 organised by Martin and Pease, leading
mathematicians flagged the importance of collaborative systems
that “think like a mathematician”, handle unstructured
approaches such as the use of “sloppy’ natural language and the
exchange of informal knowledge and intuition not recorded in
papers, and engage diverse researchers in creative problem
solving. This accords with work of cognitive scientists,
sociologists, philosophers and the narrative accounts of
mathematicians themselves, which highlight the paradoxical
nature of mathematical practice — while the goal of
mathematics is to discover mathematical truths justified by
rigorous argument, mathematical discovery involves “soft”

aspects such as creativity, informal argument, example, error and
analogy.

events.inf.ed.ac.uk/sicsa-mcp/
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|f we W|sh to teach computers to f'nd proofs it is I|I<ely to
be a good idea to reflect on how we do so ourselves.” "

W.T. Gowers. Rough structure and classification. GAFA (Geometric And
Functional Analysis), Special volume — GAFA2000(1-0), 2000.



How do humans do mathematics?

- What are the patterns of communication?
- What do they talk about?

- How do they explain things?

- What do they value®

- How do they use examples?
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Features of our approach

Empirical data - usually online fora
“Everyday” mathematics
Collaborative mathematics

“Backstage” mathematics (cf Hersh)

A range of methodologies — including data-driven, theory-driven, user-
driven, using a computational lens to test and extend



The nature of mathematical collaboration is changing

A number of senior mathematicians produce influential and widely read blogs.
e Discussion fora allow rapid informal interaction and problem-solving

e Online forums and blogs for informal mathematical discussion reveal some of the ‘back’
of mathematics:

‘mathematics as it appears among working mathematicians, in informal settings, told to one
another in an office behind closed doors’

Hersh, R. (1991). Mathematics has a front and a back. Synthese, 88:127-133.

‘It has provided, for possibly the first time ever (though | may well be wrong about this),
the first fully documented account of how a serious research problem was solved,
complete with false starts, dead ends etc.’

Gowers, T. (2009). Polymath1 and open collaborative mathematics. http://gowers.wordpress.com/2009/03/10/.



Frontstage mathematics

Corollary 3.3. Let v and U be the equal-slices and non-degenerate equal-slices measures
on [k]™, respectively. Then for any set A C [k]™ we have |v(A) — U(A)| < k?/n

Proof. It follows from Lemma 3.2 that the probability that a slice is degenerate is at most
k*/n. Therefore, if A is a set that consists only of non-degenerate sequences, then its
non-degenerate equal-slices measure is (1 — ¢)~! times its equal-slices measure, for some

¢ < k?/n. Therefore, for such a set, 0 < 7(A) — v(A) = cv(A) < k*/n. If A consists only
of degenerate sequences, then 0 < v(A) —7(A) = v(A) < k?/n. The result follows, since if
one takes a union of sets of the two different kinds, then the differences cancel out rather

than reinforcing each other.

For later use, we slightly generalize Lemma 3.2,

Lemma 3.4. Let x be chosen randomly from [k|™ using the equal-slices distribution. Then
the probability that fewer than m coordinates of x are equal to k is at most mk/n.

Proof. Let P be asin the proof of Lemma/ 3.2, This time we are interested in the probability

that pr—1 > n + k —m. The number with pp_1 =n+k — s is ("+::§_1), which is at most

(nﬁf), which as we noted in the proof of Lemma [3.2] is at most %("Zf;l) The result
follows.

Corollary 3.5. Let = be chosen randomly from |k|" using the equal-slices distribution.
Then the probability that there exists j € k] such that fewer than m coordinates of x are
equal to j is at most mk?/n.

Proof. This follows immediately from Lemma 3.4.




Backstage mathematics

31. Gil, a quick remark about Fourier expansions and the [ — 3 case. | want to
explain why | got stuck several years ago when | was trying to develop some

kind of Fourier approach. Maybe with your deep knowledge of this kind of thing
you can get me unstuck again.

1. A quick question. Furstenberg and Katznelson used the Carlson-Simpson
theorem in their proof. Does anyone know that proof well enough to know

whether the Carlson-Simpson theorem might play a role here? If so, | could add

This looks weird enough that it’s probably a wrong idea, but | still feel there may
be a “natural” probabilistic way to do it.

Here’s an attempt to throw the spanner in the works of #32.

So it looks to me as though it would be disastrous to take the uniform
distribution over lines with some fixed number of wildcards (unless, perhaps,
one had done some more preprocessing to get a stronger property than mere
richness).

27. | was rather pleased with the “conjecture” in the final paragraph of comment

22, but have just noticed that it is completely false, at least if you interpret it in
the most obvious way. Indeed, if you take both 4 and )3 to consist of al/



“Is this data representative
of mathematical practice?”



“Is this data representative
of mathematical practice?”

What is mathematical practice?



“Is this data representative
of mathematical practice?”

1. There is no single mathematical practice:

- Inglis challenges ‘Assumption of homogeneity’ with empirical studies into whether
there is agreement between mathematicians on proof validity and appraisal

- Diversity in mathematical practice recognised by conferences on mathematical
cultures and practices (Larvor, 2016), by the ethnomathematics community,
philosophical notions, such as mathematical style (Mancosu, 2009), etc.

2. The IMO is a mathematical practice:

- |t seems reasonable to assume that the Olympiad ‘culture’ may be regarded as
background for a significant fraction of the world's professional pure mathematicians.



“Is this data representative
of mathematical practice?”

Features of MPM culture:

- Trust: participants trust that the conjecture is a theorem and that there Is a
(findable) solution

- Variety: the number of collaborators and their range of mathematical experience,
ability and knowledge may well be larger/wider than in other collaborative settings

- Medium: online fora mean that participants only communicate via typed
comments in a very structured space - no diagrams, scribbles, gestures,
intonation, ....



1. Patterns of commmunication

In collaboration with Alan Smaill (University of Edinburgh)
and Simon Colton (Imperial College London)
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2. What has the computational perspective taught us?

(Evaluation of theory)
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HRL: Extending Simon Colton’s HR System

Example interaction protocol

1. The teacher requests that the students work independently for twenty theory formation steps

and then send an interesting conjecture.
2. The students comply and all send a conjecture.

3. The teacher sorts the conjectures into an agenda for discussion. It sends a request for

modifications to the first conjecture on the agenda.

4. Each agent looks at the examples and counterexamples it has for the conjecture. If it has any

counterexamples then it attempts to modify the conjecture and sends i1ts modification.

5. The teacher sorts the modified conjectures into the agenda and sends a request for modifica-

tions to the next conjecture on the agenda.



lllustrative Example 1: set-up

Student 1: integers 0 — 10 and core concepts integers, divisors and
multiplication. Propose to monster-bar if an entity is a culprit breaker. Agree a

proposal to monster-bar if the entity is a counterexample to more than 15% of
Its conjectures.

Student 2: integers 1 — 10 and core concepts integers, divisors and
multiplication. Set to use monster-barring as Student 1

The teacher requested the students to work independently for 20 theory

formation steps and then send their best non-existence conjecture for
discussion.



lllustrative Example 1: results




lllustrative Example 1: results

Student 2: There do not exist integers a, b suchthatb+a=aanda+ b =a
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Teacher: Does anyone have any counterexamples to this conjecture?
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lllustrative Example 1: results

Student 2: There do not exist integers a, b suchthatb+a=aanda+ b =a
Teacher: Does anyone have any counterexamples to this conjecture?
Student 1: All of my entities (0-10) are counterexamples to this conjecture

Teacher: How do you both respond to the counterexamples?



lllustrative Example 1: results

Student 2: There do not exist integers a, b suchthatb+a=aanda+b=a
Teacher: Does anyone have any counterexamples to this conjecture?
Student 1: All of my entities (0-10) are counterexamples to this conjecture
Teacher: How do you both respond to the counterexamples?

Student 1: [tests to see whether there was a single ‘culprit’ entity which is forcing all of
its entities to be counterexamples, and found 0] | propose to monster-bar the number O.
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Student 2: There do not exist integers a, b suchthatb+a=aanda+b=a
Teacher: Does anyone have any counterexamples to this conjecture?
Student 1: All of my entities (0-10) are counterexamples to this conjecture
Teacher: How do you both respond to the counterexamples?

Student 1: [tests to see whether there was a single ‘culprit’ entity which is forcing all of
its entities to be counterexamples, and found 0] | propose to monster-bar the number O.

Student 2: [finds that 0 breaks 63% of its conjectures] | agree we should bar it



lllustrative Example 1: results

Student 2: There do not exist integers a, b suchthatb+a=aanda+b=a
Teacher: Does anyone have any counterexamples to this conjecture?
Student 1: All of my entities (0-10) are counterexamples to this conjecture
Teacher: How do you both respond to the counterexamples?

Student 1: [tests to see whether there was a single ‘culprit’ entity which is forcing all of
its entities to be counterexamples, and found 0] | propose to monster-bar the number O.

Student 2: [finds that 0 breaks 63% of its conjectures] | agree we should bar it

Teacher: Okay, please down-grade 0 to a pseudo-entity in your theories.



lllustrative Example 2: set-up

Student 1: integers 1 — 10, core concepts integer, divisor and multiplication.
Student 2: integers 11 — 50, same core concepts

Student 3: integers 51 — 60, same core concepts

The teacher requested the students to work independently for 20 theory
formation steps and then send their best implication conjecture for discussion.



lllustrative Example 2: results

Student 3: all integers have an even number of divisors



lllustrative Example 2: results

Student 3: all integers have an even number of divisors

Student 1: [1,4,9] are counterexamples



lllustrative Example 2: results

Student 3: all integers have an even number of divisors
Student 1: [1,4,9] are counterexamples

Student 2: [16, 25, 36, 49] are counterexamples.



lllustrative Example 2: results

Student 3: all integers have an even number of divisors
Student 1: [1,4,9] are counterexamples
Student 2: [16, 25, 36, 49] are counterexamples.

Student 1: [finds concept of squares and formed the new concept non-

squares]: We can modify Student 3's conjecture to all nhon-squares have an
even number of divisors.



Representing the proof

C: For any polyhedron, V-E+F=2

ON

PO: for any polyhedron, we can remove one face and P1: for any polyhedron, V-E+F=2 iff when we remove
then stretch it flat on the board, and V-E+F=1 one face and stretch it flat on the board, then V-E+F=1

/) A ‘ 
P2: if we remove triangles one by one from a
triangulated map, then V-E+F is unchanged
A P3:if we remove triangles one by one

from a triangulated map then we’ll
be left with a single triangle

P6: we can triangulate the map which
results from removing a face from

a polyhedron and stretching it flat

on the board

P5:for any triangle,

V-E+F=1
P4: if we triangulate the map

that results from removing a face
from a polyhedron and stretching it flat
P7:from a triangulated map, on the board, then V-E+F is unchanged

if we remove any triangle,
then we either remove
one F and one E, or

one F, two E’s and one V

A

P8: by drawing any diagonal on a map
we increase both E and F by 1



Challenges

How do we know when we should surrender a conjecture?

How can we computationally represent ill-defined or ambiguous concepts?
When should we perform monster-barring?

How can we apply exception-barring to different types of conjecture?

How can we represent an informal proof in our system?

How can a computer program uncover hidden assumptions in a proof?

How can we formalise the surprise we feel when an example behaves in an unexpected
manner in a proof?

Given a counterexample, how can a computer program determine whether it is global or local?

How can a computer program perform local/global/hidden lemma incorporation?



Two further interpretations of Lakatos’s Proof and Refutations



Theorem Modifier (TM)

2
A=>-C
A=>(C <=> trivial alg) . Mace
A=>(C <=> non-trivial alg) 1) supporting algebr
11) counterexamples

\ Otter
output all proved _
theorems (AAM)=C

S. Colton and A. Pease "The TM System for Repairing Non-Theorems” Selected papers from the IJCAR'04 disproving workshop, Electronic Notes in
Theoretical Computer Science, Volume 125(3). Elsevier, 2005



™

* From TPTP library we invented 91 non-theorems. TM produced valid
modifications for 83% of them, with an average of 3.1 modifications per non-
theorem.

 Eg: Given non-theorem all groups are Abelian, TM produces all self-inverse
groups are Abelian



Proofs and Refutations as a Dialogue Game

* Theoretical model: we interpret the informal logic of mathematical discovery
proposed by Lakatos, a philosopher of mathematics, through the lens of dialogue
game theory and in particular as a dialogue game ranging over structures of
argumentation (locution rules, structural rules, commitment rules, termination rules and
outcome rules).

* Abstraction level: we develop structured arguments, from which we induce abstract
argumentation systems and compute the argumentation semantics to provide
labelings of the acceptability status of each argument. The output from this stage
corresponds to a final, or currently accepted proof artefact, which can be viewed
alongside its historical development.

 Computational model: we show how each of these formal steps is available in
iImplementation

A Pease, J Lawrence, K Budzynska, J Corneli, Reed. Lakatos-style collaborative mathematics through
dialectical, structured and abstract argumentation. Artificial Intelligence. Vol 246, 2017. pp181-219.


https://www.sciencedirect.com/science/journal/00043702

Are Lakatos’s patterns of communication found in the real world?

Example 1



20 July, 2009 at 6:51 am 2 5. The following reformulation of the
Haim problem may be useful:

Show that for any permutation s in Sn,
the sum a_s(1)+a_s(2)...+a_s(j) is not in M for any j=<n.

Now, we may use the fact that Sn is "quite large" and prove the existence of
such permutation with some kind of a pigeonhole-ish principle

, 21 1 © RateThis
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Show that for any permutation s in Sn,
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20 July, 2009 at 7:01 am 110. %:.z
Dave 5‘&

Addressing Michael Lugo: I think he
means number just your own comments, and then address a (person,number)

pair. [Actually, I was proposing a global numbering system; I'll try to fix it up
now. But the (author, number) pair approach would also have worked, except

perhaps for anonymous comments. -T]
Addressing Haim(2 5):

That's pretty strong; all you need is that there exists a permutation where that is
true. And it doesn’t work; there are numbers $a_1,a_2,\ldots,a_n$ and sets $M$
of $n-1% points such that, for instance, $a_1 \in M$. Then any permutation
starting with $a_1$%$ would not satisfy your conjecture for $j=1%.

But, just looking for *one* permutation that satisfies $a_s(1)+a_s(2)...4+a_s(j)
\not \in M$ for any $j \leq n$ (which is basically the statement of the theorem),
could lend itself well to induction. In other words, use the fact that for every
subset $M’ \subset M$ of size $j$ not containing $a_s(1)+a_s(2)...+a_s(j)$,
there is a way to permute those $j$ numbers to avoid $M’s.
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subset $M’ \subset M$ of size $j$ not containing $a_s(1)+a_s(2)...+a_s(j)$,
there is a way to permute those $j$ numbers to avoid $M’s.

Of O © Rate This

20 July, 2009 at 7:10 am 12. Addressing Dave:
Haim

Sorry, indeed I meant: "Show that for
*one* permutation...”

0" O © Rate This

== P is equivalent to P’

4 )

- J

-~

P is not equivalent to P’. Here is a
counterexample.

P is equivalent to P”

o

~

| surrender - it is not the case that
P is equivalent to P’

~

J




Are Lakatos’s patterns of communication found in the real world?

Example 2



Say there are four points: an equilateral triangle, and then one point in the center of the 2
triangle. No three points are collinear.

It seems to me that the windmill can not use the center point more than once! As soon as it hits
one of the corner points, it will cycle indefinitely through the corners and never return to the
center point.

I must be missing something here...

- 0;<0 O Rate This

Comment by Jerzy — July 19, 2011 @ 8:17 pm
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Say there are four points: an equilateral triangle, and then one point in the center of the i
triangle. No three points are collinear.

It seems to me that the windmill can not use the center point more than once! As soon as it hits
one of the corner points, it will cycle indefinitely through the corners and never return to the

center point. C A
ol : — Isn’t X a
I must be missing something here... counterexample?
g J
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Comment by Jerzy — July 19, 2011 @ 8:17 pm
This isn’t true - it will alternate between the centre and each vertex of the triangle. ¥, .
—__ ¢
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Say there are four points: an equilateral triangle, and then one point in the center of the ﬁ
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Say there are four points: an equilateral triangle, and then one point in the center of the i
triangle. No three points are collinear.

It seems to me that the windmill can not use the center point more than once! As soon as it hits
one of the corner points, it will cycle indefinitely through the corners and never return to the

center point. C A
— : — Isn’t X a
I must be missing something here... counterexample?
g J
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This isn’t true - it will alternate between the centre and each vertex of the triangle. ¥. .
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Comment by Joe — July 19, 2011 @ 8:21 pm

Ohhh... I misunderstood the problem. I saw it as a half-line extending out
from the last point, in which case you would get stuck on the convex hull.
But apparently it means a full line, so that the next point can be “"behind” the
previous point. Got it.

2
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Say there are four points: an equilateral triangle, and then one point in the center of the ﬁ
triangle. No three points are collinear.

It seems to me that the windmill can not use the center point more than once! As soon as it hits
one of the corner points, it will cycle indefinitely through the corners and never return to the

center point. C A
— : — Isn’t X a
I must be missing something here... counterexample?
g J
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This isn’t true - it will alternate between the centre and each vertex of the triangle. ¥. .
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Comment by Joe — July 19, 2011 @ 8:21 pm

Ohhh... I misunderstood the problem. I saw it as a half-line extending out
from the last point, in which case you would get stuck on the convex hull.
But apparently it means a full line, so that the next point can be “"behind” the
previous point. Got it.

2

~

concept definition
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Comment by Jerzy — July 19, 2011 @ 8:31 pm



Lessons for ATP

GAMMA: Yes. (6) and (7) are not growth, but degeneration! Instead
of going on to (6) and (7), I would rather find and explain some
exciting new counterexample !

ArpHA: You may be right after all. But who decides where to stop?
Depth is only a matter of taste.

Gamma: Why not have mathematical critics just as you have literary
critics, to develop mathematical taste by public criticism? We may
even stem the tide of pretentious trivialities in mathematical literature.?

SieMA: If you stop at (5) and turn the theory of polyhedra into a
theory of triangulated spheres with # handles, how can you, if the need

arises, deal with trivial anomalies like those explained in (6) and (7)?
Mu: Child’s play!

if((current_request.motivation.attempted_method).equals("monster-barring")
&& !'(current_request.motivation.entity_under_discussion==null))

{

Entity entity = current_request.motivation.entity_under_discussion;
//into monster-barring. evaluating the proposal

//extra bit —— lakatos variable for mb —— need to put this elsewhere too
boolean use_breaks_conj_under_discussion = hr.theory. lakatos.use_breaks_conj_under_discussion;
if(use_breaks_conj_under_discussion)
{
Conjecture conj = current_request.motivation.conjecture_under_discussion;
if(conj.counterexamples.isEmpty())
{
String mb_vote = "accept proposal to bar entity";
response.response_vector.addElement(mb_vote);
}
if(!'(conj.counterexamples.isEmpty()))
{
String mb_vote = "reject proposal to bar entity";
response.response_vector.addElement(mb_vote);
}
}

- |t Is possible to give a computational reading of Lakatos’s Proofs and
Refutations, including very *human”, messy aspects such as ambiguity,
hidden assumptions, surprise, ... This offers flexibility to ATP and
suggests ways of bringing it closer to “human” mathematics



Lessons for ATP

- We can fine-tune the methods and test parameters and methods to see
which ones result in interesting theories. Eg, how to distribute data between

the students; how many independent work phases, how long; how and when
to perform the methods

-+ A computational model also allows us to evaluate extended computational
theory of mathematical discovery according to philosophically interesting
criteria such as generality, explanatory power and non-circularity

- Collaborative patterns such as Lakatos’s Proofs Refutations can be found in
real world mathematics, although can be less useful than he described

- Errors and ambiguities can be productive (but might not be)



2. What do mathematicians talk about?
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What do mathematicians talk about?

Question 2 of the 2011 IMO.

Tao posted the problem at 8pm on July 19th, 2011, having posted in advance that he would do
SO.

The relevant websites are the research thread for the problem solving process, a discussion
thread for meta-discussion about the project, and a wiki page for a summary of the problem and

discussion.

Solved over a period of 74 minutes by 27 participants through 174 comments on 27 comment
threads.

Course-grained analysis to develop a typology of comments

A. Pease and U. Martin. Seventy four minutes of mathematics: An analysis of the third mini-
polymath project. In Proc AISB Symp on Mathematical Practice and Cognition |l pages 19-29, 2012.



Let S be a finite set of at least two points in the plane.
Assume that no three points of S are collinear. A windmill
IS a process that starts with a line | going through a single
point P € S. The line rotates clockwise about the pivot P

until the first time that the line meets some other point Q
belonging to S. This point Q takes over as the new pivot,
and the line now rotates clockwise about Q, until it next
meets a point of S. This process continues indefinitely.
Show that we can choose a point P in S and a line | going
through P such that the resulting windmill uses each point
of S as a pivot infinitely many times.



A typology of comments

Concepts:

Since the points are in general position,

w(p) to be radial
sequence of all the other points p’!=p around p.
Then, every transition from a point p to q will
“set the windmill in a particular spot” in g. This
device tries to clarify that the new pointin a
windmill sequence depends (only) on the two
previous points of the sequence.



A typology of comments

Examples:

[f the points form a convex polygon, it is easy:.




A typology of comments

Conjectures:

One can start with any point (since every point
of S should be pivot infinitely often), the direction
of line that one starts with however matters!

Perhaps even the line does not matter! Is it
possible to prove that any point and any line will

do?



A typology of comments

Proof:

The first point and line P;, 1, cannot be chosen so that
P, is on the boundary of the convex hull of S and [,
picks out an adjacent point on the convex hull.
Maybe the strategy should be to take out the
convex hull of S from consideration; follow it up
by induction on removing successive convex hulls.



A typology of comments

Other:
[ think that is a good start, thanks Varun!

@Thomas @Seungly @Haggai Thank you all
for your examples. | haven’t understood
them fully yet; I'll think about them for some
time and get back if I have questions.

Yes, it seems to be a correct solution!



® Examples @ Other @ Conjecture ¢ Proof @ Concept




A typology of comments

Number of Comments

— Conjecture — Concept Proof — Examples

0 20 40 60 80 100

Minutes

120
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A fine-grained analysis

- Similar - more in depth - analysis of the first
MPM, posted in 2009

- Used software for Grounded Theory
“dedoose” to create hierarchies of tags

- Tagged 559 excerpts




@ dedoose mpm1 | Logout | Account ¥ .4))) 00 OB i O O
Great Research Made Easy ‘ ( > |! “ .l' d i a @ ( m

Home Media Excerpts Descriptors Analyze Training Security Data Set Back Projects

-— [ Selection Info
&

66 mpm1-2009 (34840-34999)

Document: mpm1-2009

=
Line #s [] Memos [ ] RTL Added: 12/04/2013 Creator: alisonp Excerpts: 559 [ Memos: 0 | Descriptors: 0 |

gowers ' meta-level comment abo...
& 54 60. Another small case.lLet's take a_i=i for i=1,2,3,4. So we're trying to get to 10 in steps of 1,2,3,4 and there are three landmines. “ mpm1-2009 (34864-34868)
« If there's a landmine on any of 1,2,3 4, then by 47 (@liuxiaochuan) they mustbe on 4, or4 and 3, or 4 and 3 and 2. In the third case we can go to 1 and then to 5, and then we're done emotion or value words
{(((o( by induction (two steps and zero obstacles, so perhaps induction was a bit of a sledgehammer). we can either
get to 5 in two steps and are then done, or there's an obstacle at 5, in which case we can go 2,6,7,10. If there's just an obstacle at 4, things get harder, since then we need to know
& | L what'goes on after4. But'then we cancheatand say that at least one number between 6 and 9 is an obstacle so we can run things in reverse. The only case not covered is then when
_ the obstacles are at 4,5,6. [
& & That was still a rather —case-by-case argument, but it serves to confirm a sense that the difficult case is when the obstacles are not near the end points.
& I'd like to try to find an argument along the following lines. Order the step sizes as a_1<\dots<a_n. Now let's try two paths. The first is where you take the steps in increasing order of
size, and the second is where you take it in decreasing order. Now look at where you are half way through this process. Suppose that in the first case you have passed well under half
¢ the obstacles and in the second case you've passed well over half. Then it should be possible to move from one extreme to the other and find a permutation where you've passed
more or less exactly half. (Actually, of course, the hypothesis here doesn't have to hold, but this is just meant to give the flavour of some kind of argument.) And then there might be a
& & |« hopeof ..o hmm ..o I'm still trying to find that glusive jump over two obstacles that takes place at exactly the right time.
& & Subquestion. If a_i=i and you have n-1 consecutive obstacles, what's the neatest proof that you must be able to get to the last non-obstacle without using a_n? (I don't think it's hard to =
& prove it, but it would be good to have something that had a hopeiof generalizing.) Codes l;‘f"t .l,
1 A
v comment type
0
clarification
Rate This
concept
20 July, 2009 at 12:03 pm L
P conjecture
gowers
I errors
& [ (€ 63. Re 54. Your analysis shows that it is possible for the gaps all to be at least a_n-1. Justlet all the a_n be very large and roughly equal to a. Then the sum is approximately equal to
{{{( na, so ifwe start near 0 and end near na, then we can get gaps of size about na/(n-1), which is bigger than a_n. So my proposal runs into difficulty. Not sure how big a difficulty it is P example
though.
explanation
1
g extension to the problem
goals
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plausibility of conjecture ]
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‘ )
yes
conditions of conjecture }’—[ are they necessary? ]<: no ]]

i here's a weaker version ]
| . " here's a stronger version ]
| subconjecture < . .
k here are two equivalent conjectures ]
: . this is too strong ]
[ conjecture <

|

|

[ heres something that should be wrong ]

[ here's a mistake in your reasoning ]—f you've assumed something you shouldn't ]»/

i here's something | know is wrong ]

~

!

ammended error ]{: o:\n ] ]
others

errors
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— =
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—— f you're right ]
response to someone pointing out error ]{:
~ you're wrong ]

unclear }
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Lessons for AITP

- Mathematicians talk about many aspects other than proof: concepts,
conjectures, examples, social mechanisms, explanations

+ These are introduced at different points in a proof attempt, for different
reasons



3. How do mathematicians
explain things?




Source Material:
Mini-Polymath Data

Year IMO Timeline Comments/Words Participants
(before solution)

2009 Q6  Start: July 20, 2009 @ 6:02 am 356 /32,430 81-100
Solution: 21 July, 2009@ 11:16 am (201)
End: August 15, 2010 @ 3:30 pm

2010 Q5 Start: July 8, 2010 @ 3:56 pm 128/7,099 28
Solution: July 8, 2010 @Q 6:24 pm  (75)
End: July 12, 2012 @Q 6:31 pm

2011 Q2 Start: July 19, 2011 @ &8:01 pm 151/9,166 43-56
Solution: July 19, 2011 @ 9:14 pm (70)
End: October 17, 2012 @ 3:25 pm

2012 Q3 Start: July 12, 2012 @ 10:01 pm 108/10,097 43-48
Solution: July 13, 2012 @ 7:53 pm (79)
End: August 22, 2012 @Q 3:27 pm

TOTAL: 742 /58,792 185 - 221




Methodology

Explanation-indicator approach (ElA): Close content analysis
of an complete search over four mathematical conversations,
based on the presence of explanation indicators: “since”;
“because”; “, as” (premise); “thus”; “therefore”; “, so”
(conclusion); “expla*”; “underst™” (explanation).

Stage 1: Automated complete indicator search
Stage 2: Close content analysis of each indicator instance - the
entire comment and surrounding comments, using cues from

these to try to determine whether explanation played a role

Stage 3: Close content analysis according to our dimensions of
explanation



Methodology

Random comment approach (RCA): designed to pick out
explanations which might not contain any of our explanation
indicators. We analysed a random 10% of our corpora of 742
comments. The analysis followed similar stages to the EIA:

Stage 1: Select a comment at random and discount it if it
contains an explanation indicator

Stage 2: Close content analysis of the entire comment and
comments around it, using cues from these to try to determine
whether explanation played a role

Stage 3: Close content analysis according to our dimensions of
explanation



Methodology

Contextual considerations in Stage 3: From sentence, comment and
surrounding comments, we;

- identify the explanans (the explanation) and the explanandum (the
phenomenon to be explained)

- consider whether there is a corresponding why-question (possibly implicit)
- consider whether there is a clear difference of level (general or specific)
between the explanandum and explanans which might be seen in terms of a

unifying feature.

- ask whether the keyword occurred in the context of object-level, meta-level
or deep (additional context) explanation

- consider what the context of the proof is, what sort of thing is being
explained, and what sort of explanation is offered



Individual context

Abilities (what can/can’t we do). [Keywords: difficulty, hard, do] Examples:
We can only almost do X; We can do X; We must be able to do X; X 1s

always possible; X might not be the hardest bit; We can ix X 1n this way;
The dithcult bit might be X.

Knowledge (what do/don’t we know). [Keywords: know, plausible, mistake,

wrong, assume, obvious, suppose/ Examples: We don’t know X; X is plausi-
ble; X 1s wrong:; X 1s a mistake.

Understand (what do/don’t we understand). [Keywords: understand] Exam-
ples: Why 1s this a contradiction?
Value/goals (what do/don’t we want). [Keywords: want, goal, need, help, prob-

lem, target, useful] Examples: X is a good idea; We want to do X; X will
achieve our goal; We need to know X:; X will help us in this way.



Mathematical context

Initial problem. Examples: The mitial problem 1s harder i1t X; The 1nitial
problem 1s hardest when X; Condition X 1s necessary for the initial problem.

Proof (approach). Examples: X is not a useful approach; Approaches X and
Y might be the same; Approach X might not work; If we can do X then we
have a complete proof.

Assertions. Examples: There 1s only one of type X; x 1s not in set X; Y 1s a
subset of X; If we do X then we’ll get Y; There must always exist X that
satisfies condition Y.

Specific cases/instances. Examples: Things get harder in case X; There will

always exist instance X that satishes condition Y; The problem works in
immstance X; other cases X and Y are trivial; Case X might be a problem.

Arguments. Examples: Let us suppose X. Then Y.

Representation. Examples: there are many ways to write X; by reducing the
problem to X.

Property. Examples: X has this property; X might not be unique; X doesn’t
have this property; X might have this property.



Social context

Type of dialogue

Initial situation

Participant’s goal

Goal of dialogue

Persuasion

Inquiry

Negotiation

Information-seeking

Deliberation

Eristic

Conflict of opinions

Need to have proof

Conflict of interests

Need information

Dilemma or Practical
choice

Personal conflict

Persuade other party

Find and verify

evidence

Get what you most
want

Acquire or give
information

Co-ordinate goals
and Actions

Verbally hit out at
opponent

Resolve or clarify
1Ssue

Prove (disprove)
hypothesis

Reasonable
settlement that both
can live with

Exchange

information

Decide best available

course of action

Reveal deeper basis
of conflict

Walton (2000) p336



Findings

- EIA: On average, 33% of comments contained one
indicator, of which we classified 72% as relating to
explanation. This gives 23% of the whole conversation as
relating to explanation.

- RCA: Of the remaining 67% of the conversation which did
not contain an indicator, we classified 21% of a random
sample as relating to explanation.This gives a further 14%
of the whole conversation.

» This gives a combined total of 37%. Explanation here
formed an important part of the mathematical conversation.



Findings

raw Y%

Hypothesis Labelling EIA RCA EIA RCA
H2 Answers to why questions 174 13 99% 100%

Not answers to why questions 2 0 1% 0%

H3 Primarily an appeal to a higher level 4 3 2%  23%
Not primarily an appeal to a higher level 172 10 98% 77%

H4 Trace explanation 121 8 69% 62%
Strategic explanation 42 4 24% 31%

Deep explanation 11 1 6% 8%

Neither trace, strategic, nor deep 2 0 1% 0%



@ understanding © ability ¢ knowledge




@ assertion © property @ proof ¢ example @ representation @ argument
@ initial problem




© Persuasion ¢ Information-seeking

® Inquiry ¢ Pedagogical
@ Deliberation




Findings

There is a tradition of explanation in mathematical practice.
All explanations are answers to why-questions.
Explanation does not occur primarily as an appeal to a higher level of generality.

Explanations can be categorised as either trace explanations, strategic
explanations, or deep explanations.

Explanations in mathematics contain purposive elements.
Explanations can occur in many mathematical contexts.

Explanations iIn mathematics are a social phenomenon.



Lessons for AITP

o EXxplanation is very common in mathematical discourse (accounting
for nearly 2/5’s of the conversation).

 EXxplanations in maths:

- take into account who is explaining and to whom

+ occur in many mathematical contexts and concern many types of
mathematical object

+occur throughout a proof attempt (not just at the end)



Conclusions
1: Look at the backstage

-+ Computer support for mathematics, such as computer algebra or
computational mathematics, has typically been for the frontstage. A
second approach is to focus on the backstage and to try to extract

principles which are sufficiently clear as to allow an algorithmic
Interpretation.

- The mechanisms by which research mathematics progresses -- as messy,

fallible, and speculative as this may be -- can usefully be studied via analysis of
informal mathematics.

- The study of mathematical practice, via philosophy and sociology of
mathematical practice provides an excellent starting point for this work.



Conclusions
2: Consider the wider context

- New mathematical knowledge is more than new

mathematical proofs. Conjecture and concept generation are
subject to rationality as well as proof, and therefore systems
can be developed which integrate these theory-development

aspects alongside proof generation.



Conclusions
3: Consider social aspects

- Mathematics Is social.

- Extending the power and reach of MathOverflow or Polymath
through a combination of people and machines raises new
challenges for artificial intelligence and computational
mathematics.



Conclusions
3: Consider social aspects

- Likely mathematical elements of a mathematics social machine would

iInclude the following:

-+ Databases of examples, perhaps incorporating user tagging, and also of
being able to mine libraries for data and deductions beyond the immediate
facts they record.

+ Technology for going beyond the linear structure to capture the more
complex structure of a proof attempt, or to represent diagrams.

-+ Automated theory formation systems which automatically invent concepts
and conjectures.

- The importance of collaborative systems that “think like a mathematician”
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