Studies of Mathematical Practice and Lessons for ATP

In collaboration with Ursula Martin, University of Oxford

Alison Pease University of Dundee

Proofs and Refutations

The Logic of Mathematical Discovery

Imre Lakatos

THE DEDUCTIVIST VERSUS THE HEURISTIC APPROACH

1. The Deductivist Approach

Euclidean methodology has developed a certain obligatory style of presentation. I shall refer to this as 'deductivist style'. This style starts with a painstakingly stated list of *axioms*, *lemmas* and/or *definitions*. The axioms and definitions frequently look artificial and mystifyingly complicated. One is never told how these complications arose. The list of axioms and definitions is followed by the carefully worded *theorems*. These are loaded with heavy-going conditions; it seems impossible that anyone should ever have guessed them. The theorem is followed by the *proof*.

The student of mathematics is obliged, according to the Euclidean ritual, to attend this conjuring act without asking questions either about the background or about how this sleight-of-hand is performed. If the student by chance discovers that some of the unseemly definitions are proof-generated, if he simply wonders how these definitions, lemmas and the theorem can possibly precede the proof, the conjuror will ostracize him for this display of mathematical immaturity.¹

In deductivist style, all propositions are true and all inferences valid. Mathematics is presented as an ever-increasing set of eternal, immutable truths. Counterexamples, refutations, criticism cannot possibly enter. An authoritarian air is secured for the subject by beginning with disguised monster-barring and proof-generated definitions and with the fully-fledged theorem, and by suppressing the primitive conjecture, the refutations, and the criticism of the proof. Deductivist style hides the struggle, hides the adventure. The whole story vanishes, the successive tentative formulations of the theorem in the course of the proof-procedure are doomed to oblivion while the end result is exalted into sacred infallibility.²

Deductivist Approach:

- Hides the struggle, hides the adventure
- Disconnect between concepts, entities, axioms, theorems and proofs; i.e., discovery and justification
- Has an authoritarian air
- Focus on soundness rather than understandability

Automated Theorem Proving:

- Hides the struggle, hides the adventure
- Disconnect between concepts, entities, axioms, theorems and proofs; i.e., discovery and justification
- Has an authoritarian air
- Focus on soundness rather than understandability

At an event in 2012 organised by Martin and Pease, leading mathematicians flagged the importance of collaborative systems that "think like a mathematician", handle unstructured approaches such as the use of "sloppy" natural language and the exchange of informal knowledge and intuition not recorded in papers, and engage diverse researchers in creative problem solving. This accords with work of cognitive scientists, sociologists, philosophers and the narrative accounts of mathematicians themselves, which highlight the paradoxical nature of mathematical practice — while the goal of mathematics is to discover mathematical truths justified by rigorous argument, mathematical discovery involves "soft" aspects such as creativity, informal argument, example, error and analogy.

events.inf.ed.ac.uk/sicsa-mcp/

"if we wish to teach computers to find proofs, it is likely to be a good idea to reflect on how we do so ourselves."

W.T. Gowers. Rough structure and classification. GAFA (Geometric And Functional Analysis), Special volume – GAFA2000(1–0), 2000.

How do humans do mathematics?

- What are the patterns of communication?
- What do they talk about?
- How do they explain things?
- What do they value?
- How do they use examples?

Research Question	How do mathematicians communicate?	What do mathematician talk about?
Data	Euler's characteristic (1750) and Cauchy's proof (1811)	
Methodology	rational reconstruction	grounded theo (data-driven)
Results	A set of heuristics	A typology o comments, wi hierarchy and timestamps
Computational System	HRL; TM; Lakatos Games	

analysis of grounded theory; keywords and user testing; ory keyword search machine learning random sampling (theory-driven) (triangulation)

A set of)f hypotheses with between values rith d support or attacks

Comparison in the front and back stage

A theory of example-use

EgBot

Features of our approach

- Empirical data usually online fora
- "Everyday" mathematics
- Collaborative mathematics ullet
- "Backstage" mathematics (cf Hersh)
- A range of methodologies including data-driven, theory-driven, userdriven, using a computational lens to test and extend

The nature of mathematical collaboration is changing

- A number of senior mathematicians produce influential and widely read blogs.
- Discussion for allow rapid informal interaction and problem-solving
- Online forums and blogs for informal mathematical discussion reveal some of the 'back' of mathematics:

- 'mathematics as it appears among working mathematicians, in informal settings, told to one another in an office behind closed doors'
 - Hersh, R. (1991). Mathematics has a front and a back. Synthese, 88:127–133.
 - 'it has provided, for possibly the first time ever (though I may well be wrong about this), the first fully documented account of how a serious research problem was solved, complete with false starts, dead ends etc.'
 - Gowers, T. (2009). Polymath1 and open collaborative mathematics. http://gowers.wordpress.com/2009/03/10/.

Frontstage mathematics

on $[k]^n$, respectively. Then for any set $A \subset [k]^n$ we have $|\nu(A) - \tilde{\nu}(A)| \leq k^2/n$

Proof. It follows from Lemma 3.2 that the probability that a slice is degenerate is at most k^2/n . Therefore, if A is a set that consists only of non-degenerate sequences, then its non-degenerate equal-slices measure is $(1-c)^{-1}$ times its equal-slices measure, for some $c < k^2/n$. Therefore, for such a set, $0 \leq \tilde{\nu}(A) - \nu(A) = c\tilde{\nu}(A) \leq k^2/n$. If A consists only of degenerate sequences, then $0 \leq \nu(A) - \tilde{\nu}(A) = \nu(A) \leq k^2/n$. The result follows, since if one takes a union of sets of the two different kinds, then the differences cancel out rather than reinforcing each other.

For later use, we slightly generalize Lemma 3.2.

the probability that fewer than m coordinates of x are equal to k is at most mk/n.

Proof. Let P be as in the proof of Lemma 3.2. This time we are interested in the probability that $p_{k-1} \ge n+k-m$. The number with $p_{k-1} = n+k-s$ is $\binom{n+k-s-1}{k-2}$, which is at most $\binom{n+k-2}{k-2}$, which as we noted in the proof of Lemma 3.2 is at most $\frac{k}{n}\binom{n+k-1}{k-1}$. The result follows.

Corollary 3.5. Let x be chosen randomly from $[k]^n$ using the equal-slices distribution. Then the probability that there exists $j \in [k]$ such that fewer than m coordinates of x are equal to j is at most mk^2/n .

Proof. This follows immediately from Lemma 3.4.

Corollary 3.3. Let ν and $\tilde{\nu}$ be the equal-slices and non-degenerate equal-slices measures

Lemma 3.4. Let x be chosen randomly from $[k]^n$ using the equal-slices distribution. Then

Backstage mathematics

31. Gil, a quick remark about Fourier expansions and the k=3 case. I want to explain why I got stuck several years ago when I was trying to develop some kind of Fourier approach. Maybe with your deep knowledge of this kind of thing you can get me unstuck again.

1. A quick question. Furstenberg and Katznelson used the Carlson-Simpson theorem in their proof. Does anyone know that proof well enough to know whether the Carlson-Simpson theorem might play a role here? If so, I could add

be a "natural" probabilistic way to do it.

Here's an attempt to throw the spanner in the works of #32.

So it looks to me as though it would be disastrous to take the uniform distribution over lines with some fixed number of wildcards (unless, perhaps, one had done some more preprocessing to get a stronger property than mere richness).

27. I was rather pleased with the "conjecture" in the final paragraph of comment 22, but have just noticed that it is completely false, at least if you interpret it in the most obvious way. Indeed, if you take both \mathcal{A} and \mathcal{B} to consist of all

- This looks weird enough that it's probably a wrong idea, but I still feel there may

What is mathematical practice?

- There is no single mathematical practice:
 - Inglis challenges 'Assumption of homogeneity' with empirical studies into whether there is agreement between mathematicians on proof validity and appraisal
 - Diversity in mathematical practice recognised by conferences on mathematical cultures and practices (Larvor, 2016), by the ethnomathematics community, philosophical notions, such as mathematical style (Mancosu, 2009), etc.
- 2. The IMO is a mathematical practice:
 - It seems reasonable to assume that the Olympiad 'culture' may be regarded as background for a significant fraction of the world's professional pure mathematicians.

Features of MPM culture:

- **Trust:** participants trust that the conjecture is a theorem and that there is a (findable) solution

- Variety: the number of collaborators and their range of mathematical experience, ability and knowledge may well be larger/wider than in other collaborative settings

- Medium: online fora mean that participants only communicate via typed comments in a very structured space - no diagrams, scribbles, gestures, intonation,

1. Patterns of communication

In collaboration with Alan Smaill (University of Edinburgh) and Simon Colton (Imperial College London)

- 1. For all polyhedra, V-E+F=2
- \rightarrow For all polyhedra, except those with cavities, V-E+F=2
- 2. For all polyhedra, V-E+F=2
- \rightarrow For all convex polyhedra, *V*-*E*+*F*=2

- 1. Goldbach's conjecture:
- All even numbers are the sum of two primes
- → All even numbers except 2 are the sum of two primes
- 2. All groups are Abelian → All self-inverse groups are Abelian
- 3. All integers have an even number of divisors → All non-squares have an even number of divisors

- 1. For all polyhedra, V-E+F=2
- \rightarrow For all polyhedra, except those with cavities, V-E+F=2
- 2. For all polyhedra, V-E+F=2
- \rightarrow For all convex polyhedra, *V*-*E*+*F*=2

1. Is the system a faithful model of the theory? (Evaluation of system) (Evaluation of theory)

- 1. Goldbach's conjecture:
- All even numbers are the sum of two primes
- \longrightarrow All even numbers except 2 are the sum of two primes
- 2. All groups are Abelian → All self-inverse groups are Abelian

3. All integers have an even number of divisors → All non-squares have an even number of divisors

HRL: Extending Simon Colton's HR System Example interaction protocol

1. The teacher requests that the students work independently for twenty theory formation steps and then send an interesting conjecture.

2. The students comply and all send a conjecture.

3. The teacher sorts the conjectures into an agenda for discussion. It sends a request for modifications to the first conjecture on the agenda.

4. Each agent looks at the examples and counterexamples it has for the conjecture. If it has any counterexamples then it attempts to modify the conjecture and sends its modification.

5. The teacher sorts the modified conjectures into the agenda and sends a request for modifications to the next conjecture on the agenda.

Illustrative Example 1: set-up

Student 1: integers 0 – 10 and core concepts integers, divisors and multiplication. Propose to monster-bar if an entity is a culprit breaker. Agree a proposal to monster-bar if the entity is a counterexample to more than 15% of its conjectures.

Student 2: integers 1 – 10 and core concepts integers, divisors and multiplication. Set to use monster-barring as Student 1

The teacher requested the students to work independently for 20 theory formation steps and then send their best non-existence conjecture for discussion.

Student 2: There do not exist integers a, b such that b + a = a and a + b = a

Student 2: There do not exist integers a, b such that b + a = a and a + b = a**Teacher:** Does anyone have any counterexamples to this conjecture?

Student 2: There do not exist integers a, b such that b + a = a and a + b = a**Teacher:** Does anyone have any counterexamples to this conjecture? **Student 1:** All of my entities (0-10) are counterexamples to this conjecture

Student 2: There do not exist integers a, b such that b + a = a and a + b = a**Teacher:** Does anyone have any counterexamples to this conjecture? **Student 1:** All of my entities (0-10) are counterexamples to this conjecture **Teacher:** How do you both respond to the counterexamples?

Student 2: There do not exist integers a, b such that b + a = a and a + b = a

Teacher: Does anyone have any counterexamples to this conjecture?

Student 1: All of my entities (0-10) are counterexamples to this conjecture

Teacher: How do you both respond to the counterexamples?

- **Student 1:** [tests to see whether there was a single 'culprit' entity which is forcing all of its entities to be counterexamples, and found 0] I propose to monster-bar the number 0.

Student 2: There do not exist integers a, b such that b + a = a and a + b = a

Teacher: Does anyone have any counterexamples to this conjecture?

Student 1: All of my entities (0-10) are counterexamples to this conjecture

Teacher: How do you both respond to the counterexamples?

Student 2: *[finds that 0 breaks 63% of its conjectures]* I agree we should bar it

- **Student 1:** [tests to see whether there was a single 'culprit' entity which is forcing all of its entities to be counterexamples, and found 0] I propose to monster-bar the number 0.

Student 2: There do not exist integers a, b such that b + a = a and a + b = a

Teacher: Does anyone have any counterexamples to this conjecture?

Student 1: All of my entities (0-10) are counterexamples to this conjecture

Teacher: How do you both respond to the counterexamples?

Student 2: *[finds that 0 breaks 63% of its conjectures]* I agree we should bar it

Teacher: Okay, please down-grade 0 to a pseudo-entity in your theories.

- **Student 1:** [tests to see whether there was a single 'culprit' entity which is forcing all of its entities to be counterexamples, and found 0] I propose to monster-bar the number 0.

Illustrative Example 2: set-up

Student 2: integers 11 – 50, same core concepts **Student 3:** integers 51 – 60, same core concepts

The teacher requested the students to work independently for 20 theory

- **Student 1:** integers 1 10, core concepts integer, divisor and multiplication.

formation steps and then send their best implication conjecture for discussion.

Student 3: all integers have an even number of divisors

Student 3: all integers have an even number of divisors Student 1: [1,4,9] are counterexamples

Student 3: all integers have an even number of divisors **Student 1:** [1,4,9] are counterexamples **Student 2:** [16, 25, 36, 49] are counterexamples.

- Student 3: all integers have an even number of divisors
- Student 1: [1,4,9] are counterexamples
- Student 2: [16, 25, 36, 49] are counterexamples.
- **Student 1:** [finds concept of squares and formed the new concept non-squares]: We can modify **Student 3**'s conjecture to *all non-squares have an even number of divisors.*

Representing the proof

C: For any polyhedron, V–E+F=2

P0: for any polyhedron, we can remove one face and then stretch it flat on the board, and V-E+F=1

P2: if we remove triangles one by one from a triangulated map, then V–E+F is unchanged

> P3: if we remove triangles one by one from a triangulated map then we'll be left with a single triangle

P7: from a triangulated map, if we remove any triangle, then we either remove one F and one E, or one F, two E's and one V

P1: for any polyhedron, V-E+F=2 iff when we remove one face and stretch it flat on the board, then V-E+F=1

P8: by drawing any diagonal on a map we increase both E and F by 1
Challenges

- How do we know when we should surrender a conjecture?
- How can we computationally represent ill-defined or ambiguous concepts?
- When should we perform monster-barring?
- How can we apply exception-barring to different types of conjecture?
- How can we represent an informal proof in our system?
- How can a computer program uncover hidden assumptions in a proof?
- How can we formalise the surprise we feel when an example behaves in an unexpected manner in a proof?
- Given a counterexample, how can a computer program determine whether it is global or local?
- How can a computer program perform local/global/hidden lemma incorporation?

Two further interpretations of Lakatos's Proof and Refutations

S. Colton and A. Pease "The TM System for Repairing Non-Theorems" Selected papers from the IJCAR'04 disproving workshop, Electronic Notes in Theoretical Computer Science, Volume 125(3). Elsevier, 2005

Theorem Modifier (TM)

TM

- From TPTP library we invented 91 non-theorems. TM produced valid theorem.
- groups are Abelian

modifications for 83% of them, with an average of 3.1 modifications per non-

• Eg: Given non-theorem all groups are Abelian, TM produces all self-inverse

Proofs and Refutations as a Dialogue Game

- **Theoretical model:** we interpret the informal logic of mathematical discovery game theory and in particular as a dialogue game ranging over structures of outcome rules).
- argumentation systems and compute the argumentation semantics to provide alongside its historical development.
- Computational model: we show how each of these formal steps is available in implementation

A Pease, J Lawrence, K Budzynska, J Corneli, Reed. Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artificial Intelligence. Vol 246, 2017. pp181-219.

proposed by Lakatos, a philosopher of mathematics, through the lens of dialogue argumentation (locution rules, structural rules, commitment rules, termination rules and

• Abstraction level: we develop structured arguments, from which we induce abstract labelings of the acceptability status of each argument. The output from this stage corresponds to a final, or currently accepted proof artefact, which can be viewed

Are Lakatos's patterns of communication found in the real world? Example 1

20 July, 2009 at 6:51 am	2 5. The following reformu
Haim	problem may be useful:
	Show that for any permuta
the sum a_s(1)+a_s(2)+a_s(j) is not in M for any j=<n.< li=""></n.<>

👍 2 👎 1 🛛 🕧 Rate This

lation of the

ation s in Sn,

20 July, 2009 at 6:51 am	2 5. The following reformu
Haim	problem may be useful:
	Show that for any permuta
the sum a_s(1)+a_s(2)+a_s	(j) is not in M for any j= <n.< p=""></n.<>

👍 2 👎 1 🛛 🕧 Rate This

ation s in Sn,

P is equivalent to P'

20 July, 2009 at 6:51 am	2 5. The following reformul
Haim	problem may be useful:
	Show that for any permuta
the sum a_s(1)+a_s(2)+a_s	s(j) is not in M for any j= <n.< th=""></n.<>

👍 2 吨 1 🕧 Rate This

20 July, 2009 at 7:01 am 1 10. Dave

Addressing Michael Lugo: I think he means number just your own comments, and then address a (person, number) pair. [Actually, I was proposing a global numbering system; I'll try to fix it up now. But the (author, number) pair approach would also have worked, except perhaps for anonymous comments. -T]

Addressing Haim(2 5):

That's pretty strong; all you need is that there exists a permutation where that is true. And it doesn't work; there are numbers \$a_1,a_2,\ldots,a_n\$ and sets \$M\$ of \$n-1\$ points such that, for instance, \$a_1 \in M\$. Then any permutation starting with \$a_1\$ would not satisfy your conjecture for \$j=1\$.

But, just looking for *one* permutation that satisfies $a_s(1)+a_s(2)...+a_s(j)$ \not \in M\$ for any \$j \leq n\$ (which is basically the statement of the theorem), could lend itself well to induction. In other words, use the fact that for every subset \$M' \subset M\$ of size \$j\$ not containing \$a_s(1)+a_s(2)...+a_s(j)\$, there is a way to permute those \$j\$ numbers to avoid \$M'\$.

🔬 0 吨 0 🕧 Rate This

lation of the

ation s in Sn,

P is equivalent to P'

20 July, 2009 at 6:51 am	2 5. The following reformul
Haim	problem may be useful:
	Show that for any permuta
the sum a_s(1)+a_s(2)+a_s	s(j) is not in M for any j= <n.< th=""></n.<>

🔬 2 📭 1 🕜 Rate This

20 July, 2009 at 7:01 am **10. Dave**

Addressing Michael Lugo: I think he

means number just your own comments, and then address a (person,number) pair. [Actually, I was proposing a global numbering system; I'll try to fix it up now. But the (author, number) pair approach would also have worked, except perhaps for anonymous comments. -T]

Addressing Haim(2 5):

That's pretty strong; all you need is that there exists a permutation where that is true. And it doesn't work; there are numbers a_1,a_2,\ldots,a_n and sets M_{a_1} of n-1 points such that, for instance, $a_1 \in M$. Then any permutation starting with a_1 would not satisfy your conjecture for j=1.

But, just looking for *one* permutation that satisfies $a_s(1)+a_s(2)...+a_s(j) \ Not \in M\ for any <math>j \le n\ (which is basically the statement of the theorem), could lend itself well to induction. In other words, use the fact that for every subset <math>M' \le M\ of size \ j\ not containing \ a_s(1)+a_s(2)...+a_s(j)$, there is a way to permute those $j\ numbers to avoid \ M'\$.

👔 0 📭 0 🕜 Rate This

20 July, 2009 at 6:51 am	2 5. The following reformution
Haim	problem may be useful:
	Show that for any permuta
the sum a_s(1)+a_s(2)+a_s((j) is not in M for any j=<n.< li=""></n.<>

🔬 2 📭 1 🕜 Rate This

20 July, 2009 at 7:01 am **10. Dave**

Addressing Michael Lugo: I think he

means number just your own comments, and then address a (person,number) pair. [Actually, I was proposing a global numbering system; I'll try to fix it up now. But the (author, number) pair approach would also have worked, except perhaps for anonymous comments. -T]

Addressing Haim(2 5):

That's pretty strong; all you need is that there exists a permutation where that is true. And it doesn't work; there are numbers a_1,a_2,\ldots,a_n and sets M_{a_1} of n-1 points such that, for instance, $a_1 \in M$. Then any permutation starting with a_1 would not satisfy your conjecture for j=1.

But, just looking for *one* permutation that satisfies $a_s(1)+a_s(2)...+a_s(j) \ Not \in M\ for any <math>j \le n\ (which is basically the statement of the theorem), could lend itself well to induction. In other words, use the fact that for every subset <math>M' \le M\ of size \ j\ not containing \ a_s(1)+a_s(2)...+a_s(j)$, there is a way to permute those $j\ numbers to avoid \ M'\$.

👍 0 📭 0 🛛 🕦 Rate This

20 July, 2009 at 7:10 am Haim

Addressing Dave:

Sorry, indeed I meant: "Show that for

one permutation ... "

20 July, 2009 at 6:51 am	2 5. The following reformution
Haim	problem may be useful:
	Show that for any permuta
the sum a_s(1)+a_s(2)+a_s((j) is not in M for any j=<n.< li=""></n.<>

🔬 2 📭 1 🕜 Rate This

20 July, 2009 at 7:01 am **10. Dave**

Addressing Michael Lugo: I think he

means number just your own comments, and then address a (person,number) pair. [Actually, I was proposing a global numbering system; I'll try to fix it up now. But the (author, number) pair approach would also have worked, except perhaps for anonymous comments. -T]

Addressing Haim(2 5):

That's pretty strong; all you need is that there exists a permutation where that is true. And it doesn't work; there are numbers a_1,a_2,\ldots,a_n and sets M of n-1 points such that, for instance, $a_1 \in M$. Then any permutation starting with a_1 would not satisfy your conjecture for j=1.

But, just looking for *one* permutation that satisfies $a_s(1)+a_s(2)...+a_s(j) \ Not \in M\ for any <math>j \le n\ (which is basically the statement of the theorem), could lend itself well to induction. In other words, use the fact that for every subset <math>M' \le M\ of size \ j\ not containing \ a_s(1)+a_s(2)...+a_s(j)$, there is a way to permute those $j\ numbers to avoid \ M'\$.

👍 0 📭 0 🛛 🕦 Rate This

20 July, 2009 at 7:10 am Haim

Addressing Dave:

Sorry, indeed I meant: "Show that for

one permutation ... "

 \bigotimes

Are Lakatos's patterns of communication found in the real world? Example 2

It seems to me that the windmill can not use the center point more than once! As soon as it hits one of the corner points, it will cycle indefinitely through the corners and never return to the center point.

I must be missing something here...

0 Kote This

Comment by Jerzy — July 19, 2011 @ 8:17 pm

It seems to me that the windmill can not use the center point more than once! As soon as it hits one of the corner points, it will cycle indefinitely through the corners and never return to the center point.

I must be missing something here...

🌽 0 🎽 0 🛛 🖉 Rate This

Comment by Jerzy — July 19, 2011 @ 8:17 pm

It seems to me that the windmill can not use the center point more than once! As soon as it hits one of the corner points, it will cycle indefinitely through the corners and never return to the center point.

I must be missing something here...

🌽 o 🔀 o 🛛 🖉 Rate This

Comment by Jerzy — July 19, 2011 @ 8:17 pm

0 × 0 Rate This

Comment by Joe — July 19, 2011 @ 8:21 pm

It seems to me that the windmill can not use the center point more than once! As soon as it hits one of the corner points, it will cycle indefinitely through the corners and never return to the center point.

I must be missing something here...

0 Kote This

Comment by Jerzy — July 19, 2011 @ 8:17 pm

0 × 0 Rate This

Comment by Joe — July 19, 2011 @ 8:21 pm

It seems to me that the windmill can not use the center point more than once! As soon as it hits one of the corner points, it will cycle indefinitely through the corners and never return to the center point.

I must be missing something here...

0 × 0 Rate This

Comment by Jerzy — July 19, 2011 @ 8:17 pm

0 × 0 Rate This

Comment by Joe — July 19, 2011 @ 8:21 pm

Ohhh... I misunderstood the problem. I saw it as a half-line extending out from the last point, in which case you would get stuck on the convex hull. But apparently it means a full line, so that the next point can be "behind" the previous point. Got it.

🌽 1 🔀 0 🕜 Rate This

Comment by Jerzy — July 19, 2011 @ 8:31 pm

It seems to me that the windmill can not use the center point more than once! As soon as it hits one of the corner points, it will cycle indefinitely through the corners and never return to the center point.

I must be missing something here...

0 × 0 Rate This

Comment by Jerzy — July 19, 2011 @ 8:17 pm

0 × 0 Rate This

Comment by Joe — July 19, 2011 @ 8:21 pm

Ohhh... I misunderstood the problem. I saw it as a half-line extending out from the last point, in which case you would get stuck on the convex hull. But apparently it means a full line, so that the next point can be "behind" the previous point. Got it.

1 × 0 Ø Rate This

Comment by Jerzy — July 19, 2011 @ 8:31 pm

Ah yes, I'll revise my concept definition

Lessons for ATP

 \leftarrow

GAMMA: Yes. (6) and (7) are not growth, but degeneration! Instead of going on to (6) and (7), I would rather find and explain some exciting new counterexample !1

ALPHA: You may be right after all. But who decides where to stop? Depth is only a matter of taste.

GAMMA: Why not have mathematical critics just as you have literary critics, to develop mathematical taste by public criticism? We may even stem the tide of pretentious trivialities in mathematical literature.²

SIGMA: If you stop at (5) and turn the theory of polyhedra into a theory of triangulated spheres with *n* handles, how can you, if the need arises, deal with trivial anomalies like those explained in (6) and (7)?

Mu: Child's play!

• hidden assumptions, surprise, ... This offers flexibility to ATP and suggests ways of bringing it closer to "human" mathematics

```
if((current_request.motivation.attempted_method).equals("monster-barring")
   && !(current_request.motivation.entity_under_discussion==null))
Entity entity = current_request.motivation.entity_under_discussion;
//into monster-barring. evaluating the proposal
//extra bit -- lakatos variable for mb -- need to put this elsewhere too
boolean use_breaks_conj_under_discussion = hr.theory.lakatos.use_breaks_conj_under_discussion;
if(use_breaks_conj_under_discussion)
 Conjecture conj = current_request.motivation.conjecture_under_discussion;
  if(conj.counterexamples.isEmpty())
      String mb_vote = "accept proposal to bar entity";
      response.response_vector.addElement(mb_vote);
 if(!(conj.counterexamples.isEmpty()))
     String mb_vote = "reject proposal to bar entity";
      response.response_vector.addElement(mb_vote);
```

It is possible to give a computational reading of Lakatos's Proofs and Refutations, including very "human", messy aspects such as ambiguity,

Lessons for ATP

- We can fine-tune the methods and test parameters and methods to see to perform the methods
- criteria such as generality, explanatory power and non-circularity
- real world mathematics, although can be less useful than he described
- Errors and ambiguities can be productive (but might not be)

which ones result in interesting theories. Eg, how to distribute data between the students; how many independent work phases, how long; how and when

 A computational model also allows us to evaluate extended computational theory of mathematical discovery according to philosophically interesting

Collaborative patterns such as Lakatos's Proofs Refutations can be found in

- 1. Broad stroke analysis
- 2. Fine-grained analysis

1. Broad stroke analysis

2. Fine-grained analysis

Question 2 of the 2011 IMO.

SO.

discussion.

threads.

Course-grained analysis to develop a typology of comments

- Tao posted the problem at 8pm on July 19th, 2011, having posted in advance that he would do
- The relevant websites are the research thread for the problem solving process, a discussion thread for meta-discussion about the project, and a wiki page for a summary of the problem and
- Solved over a period of 74 minutes by 27 participants through 174 comments on 27 comment

 - A. Pease and U. Martin. Seventy four minutes of mathematics: An analysis of the third mini*polymath project.* In Proc AISB Symp on Mathematical Practice and Cognition II pages 19-29, 2012.

Let S be a finite set of at least two points in the plane. Assume that no three points of S are collinear. A windmill is a process that starts with a line I going through a single point $P \in S$. The line rotates clockwise about the pivot P until the first time that the line meets some other point Q belonging to S. This point Q takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of S. This process continues indefinitely. Show that we can choose a point P in S and a line I going through P such that the resulting windmill uses each point of S as a pivot infinitely many times.

Concepts:

previous points of the sequence.

A typology of comments

Since the points are in general position, you **could define** "the wheel of p" w(p) to be radial sequence of all the other points p'!=p around p. Then, every transition from a point p to q will "set the windmill in a particular spot" in q. This device tries to clarify that the new point in a windmill sequence depends (only) on the two

Examples:

A typology of comments

If the points form a **convex polygon**, it is easy.

Conjectures:

do?

- **One can start with any point** (since every point) of S should be pivot infinitely often), the direction of line that one starts with however matters!
- Perhaps even the line does not matter! Is it possible to prove that any point and any line will

Proof:

The first point and line P_0 , l_0 cannot be chosen so that P_0 is on the boundary of the convex hull of S and l_0 picks out an adjacent point on the convex hull. Maybe the strategy should be to take out the convex hull of S from consideration; follow it up by induction on removing successive convex hulls.

Other:

time and get back if I have questions.

Yes, it seems to be a correct solution!

- I think that is a good start, thanks Varun!
- @Thomas @Seungly @Haggai Thank you all for your examples. I haven't understood them fully yet; I'll think about them for some

14%

20%

A typology of comments

1. Broad stroke analysis 2. Fine-grained analysis

A fine-grained analysis

- MPM, posted in 2009
- Used software for Grounded Theory "dedoose" to create hierarchies of tags
- Tagged 559 excerpts

Similar - more in depth - analysis of the first

ocument	t: mpm1-2009	
Line #'s 🖪	Memos 🗌 RTL	Added: 12/04/
	gowers	
ſ«	54 60. Another small case. Let's take a_i=i for i=1,2,3,4. So we're trying to get to 10 in steps of	1,2,3,4 and there
	If there's a landmine on any of 1,2,3,4, then by 47 (@liuxiaochuan) they must be on 4, or 4 and by induction (two steps and zero obstacles, so perhaps induction was a bit of a sledgehammer) get to 5 in two steps and are then done, or there's an obstacle at 5, in which case we can go 2, what goes on after 4. But then we can cheat and say that at least one number between 6 and 9 the obstacles are at 4,5,6.	3, or 4 and 3 and). If there are obst 6,7,10. If there's j) is an obstacle so
66	That was still a rather ugly case-by-case argument, but it serves to confirm a sense that the diff	ficult case is wher
EE	I'd like to try to find an argument along the following lines. Order the step sizes as a_1<\dots <a size, and the second is where you take it in decreasing order. Now look at where you are half w the obstacles and in the second case you've passed well over half. Then it should be possible to more or less exactly half. (Actually, of course, the hypothesis here doesn't have to hold, but this hope of hmm I'm still trying to find that elusive jump over two obstacles that takes place a</a 	_n. Now let's try to ray through this pl to move from one is just meant to g it exactly the right
€ € €	Subquestion. If a_i=i and you have n-1 consecutive obstacles, what's the neatest proof that you prove it, but it would be good to have something that had a hope of generalizing.)	u must be able to g
	1	
	0	
	Rate This	
	20 July, 2009 at 12:03 pm	
	gowers	
€ € €	63. Re 54. Your analysis shows that it is possible for the gaps all to be at least a_n-1. Just let a na, so if we start near 0 and end near na, then we can get gaps of size about na/(n-1), which is though.	I the a_n be very bigger than a_n.
	1	
	0	

*

Prev Excerpt Ne

Next Excerpt

Lessons for ATP

- Mathematicians talk about many aspects other than proof: concepts, conjectures, examples, social mechanisms, explanations
- These are introduced at different points in a proof attempt, for different reasons

3. How do mathematicians explain things?

Source Material: Mini-Polymath Data

Year	IMO	Timeline	Comments/Words (before solution)	Participants
2009	$\mathbf{Q6}$	Start: July 20, 2009 @ 6:02 am Solution: 21 July, 2009@ 11:16 am End: August 15, 2010 @ 3:30 pm	356/32,430 (201)	81-100
2010	$\mathbf{Q5}$	Start: July 8, 2010 @ 3:56 pm Solution: July 8, 2010 @ 6:24 pm End: July 12, 2012 @ 6:31 pm	128/7,099 (75)	28
2011	$\mathbf{Q2}$	Start: July 19, 2011 @ 8:01 pm Solution: July 19, 2011 @ 9:14 pm End: October 17, 2012 @ 3:25 pm	151/9,166 (70)	43-56
2012	$\mathbf{Q3}$	Start: July 12, 2012 @ 10:01 pm Solution: July 13, 2012 @ 7:53 pm End: August 22, 2012 @ 3:27 pm	108/10,097 (79)	43-48
TOTAL:			742/58,792	185 - 221

Nethodology

based on the presence of explanation indicators: "since"; "because"; ", as" (premise); "thus"; "therefore"; ", so" (conclusion); "expla*"; "underst*" (explanation).

Stage 1: Automated complete indicator search

explanation

- **Explanation-indicator approach (EIA):** Close content analysis of an complete search over four mathematical conversations,
- **Stage 2:** Close content analysis of each indicator instance the entire comment and surrounding comments, using cues from these to try to determine whether explanation played a role
- **Stage 3:** Close content analysis according to our dimensions of

Nethodology

Stage 1: Select a comment at random and discount it if it contains an explanation indicator

whether explanation played a role

explanation

- Random comment approach (RCA): designed to pick out explanations which might not contain any of our explanation indicators. We analysed a random 10% of our corpora of 742 comments. The analysis followed similar stages to the EIA:
- Stage 2: Close content analysis of the entire comment and comments around it, using cues from these to try to determine
- **Stage 3:** Close content analysis according to our dimensions of

Nethodology

Contextual considerations in Stage 3: From sentence, comment and surrounding comments, we:

- identify the explanans (the explanation) and the explanandum (the phenomenon to be explained)
- consider whether there is a corresponding why-question (possibly implicit)
- consider whether there is a clear difference of level (general or specific) between the explanandum and explanans which might be seen in terms of a unifying feature.
- ask whether the keyword occurred in the context of object-level, meta-level or deep (additional context) explanation
- consider what the context of the proof is, what sort of thing is being explained, and what sort of explanation is offered

Individual context

Abilities (what can/can't we do). [Keywords: difficulty, hard, do] Examples: We can only almost do X; We can do X; We must be able to do X; X is always possible; X might not be the hardest bit; We can fix X in this way; The difficult bit might be X. Knowledge (what do/don't we know). [Keywords: know, plausible, mistake, wrong, assume, obvious, suppose Examples: We don't know X; X is plausible; X is wrong; X is a mistake. Understand (what do/don't we understand). [Keywords: understand] Examples: Why is this a contradiction? Value/goals (what do/don't we want). [Keywords: want, goal, need, help, prob*lem, target, useful* Examples: X is a good idea; We want to do X; X will achieve our goal; We need to know X; X will help us in this way.

Mathematical context

Initial problem. Examples: The initial problem is harder if X; The initial problem is hardest when X; Condition X is necessary for the initial problem.
Proof (approach). Examples: X is not a useful approach; Approaches X and Y might be the same; Approach X might not work; If we can do X then we have a complete proof.

Assertions. Examples: There is only one of type X; x is not in set X; Y is a subset of X; If we do X then we'll get Y; There must always exist X that satisfies condition Y.

Specific cases/instances. Examples: Things get harder in case X; There will always exist instance X that satisfies condition Y; The problem works in instance X; other cases X and Y are trivial; Case X might be a problem.
Arguments. Examples: Let us suppose X. Then Y.
Representation. Examples: there are many ways to write X; by reducing the problem to X.

Property. Examples: X has this property; X might not be unique; X doesn't have this property; X might have this property.

Type of dialogue	Initial situation	Participant's goal	Goal of dialogue
Persuasion	Conflict of opinions	Persuade other party	Resolve or clarify issue
Inquiry	Need to have proof	Find and verify evidence	Prove (disprove) hypothesis
Negotiation	Conflict of interests	Get what you most want	Reasonable settlement that both can live with
Information-seeking	Need information	Acquire or give information	Exchange information
Deliberation	Dilemma or Practical choice	Co-ordinate goals and Actions	Decide best available course of action
Eristic	Personal conflict	Verbally hit out at opponent	Reveal deeper basis of conflict

Social context

Walton (2000) p336

Findings

- EIA: On average, 33% of comments contained one indicator, of which we classified 72% as relating to relating to explanation.
- of the whole conversation.
- This gives a combined total of 37%. Explanation here

explanation. This gives 23% of the whole conversation as

• RCA: Of the remaining 67% of the conversation which did not contain an indicator, we classified 21% of a random sample as relating to explanation. This gives a further 14%

formed an important part of the mathematical conversation.

Findings

		raw		%	
Hypothesis	Labelling	EIA	RCA	EIA	RCA
H2	Answers to why questions		13	99%	100%
	Not answers to why questions		0	1%	0%
H3	Primarily an appeal to a higher level	4	3	2%	23%
	Not primarily an appeal to a higher level	172	10	98%	77%
H4	Trace explanation	121	8	69%	62%
	Strategic explanation	42	4	24%	31%
	Deep explanation	11	1	6%	8%
	Neither trace, strategic, nor deep	2	0	1%	0%

The Social Context: In what sort of dialogue does the explanation take place? iry Pedagogical Persuasion Information-seeking

1%

62%

Findings

- There is a tradition of explanation in mathematical practice.
- All explanations are answers to why-questions.
- Explanation does not occur primarily as an appeal to a higher level of generality.
- Explanations can be categorised as either trace explanations, strategic explanations, or deep explanations.
- Explanations in mathematics contain purposive elements.
- Explanations can occur in many mathematical contexts.
- Explanations in mathematics are a social phenomenon.

Lessons for ATP

- Explanation is very common in mathematical discourse (accounting) for nearly 2/5's of the conversation).
- Explanations in maths:
 - take into account who is explaining and to whom
 - occur in many mathematical contexts and concern many types of mathematical object
 - occur throughout a proof attempt (not just at the end)

Conclusions 1: Look at the backstage

- Computer support for mathematics, such as computer algebra or computational mathematics, has typically been for the frontstage. A second approach is to focus on the backstage and to try to extract principles which are sufficiently clear as to allow an algorithmic interpretation.
- The mechanisms by which research mathematics progresses -- as messy, informal mathematics.

fallible, and speculative as this may be -- can usefully be studied via analysis of

The study of mathematical practice, via philosophy and sociology of mathematical practice provides an excellent starting point for this work.

Conclusions 2: Consider the wider context

 New mathematical knowledge is more than new mathematical proofs. Conjecture and concept generation are subject to rationality as well as proof, and therefore systems can be developed which integrate these theory-development aspects alongside proof generation.

Conclusions **3: Consider social aspects**

- Mathematics is social.
- through a combination of people and machines raises new challenges for artificial intelligence and computational mathematics.

Extending the power and reach of MathOverflow or Polymath

Conclusions **3: Consider social aspects**

- Likely mathematical elements of a mathematics social machine would include the following:
 - facts they record.
 - complex structure of a proof attempt, or to represent diagrams.
 - and conjectures.

Databases of examples, perhaps incorporating user tagging, and also of being able to mine libraries for data and deductions beyond the immediate

Technology for going beyond the linear structure to capture the more

Automated theory formation systems which automatically invent concepts

The importance of collaborative systems that "think like a mathematician"

-Pease. A Computational Model of Lakatos-style Reasoning PhD thesis, School of Informatics, University of Edinburgh, 2007. Online at <u>http://hdl.handle.net/</u><u>1842/2113</u>.

-S. Colton and A. Pease. *The TM System for Repairing Non-Theorems.* Sel papers from the IJCAR'04 disproving workshop, ENTCS, Vol 125(3). Elsevier, 2005.

- A Pease, J Lawrence, K Budzynska, J Corneli, Reed. Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artificial

U. Martin and A. Pease Mathematical Practice, Crowdsourcing, and Social Machines. Intelligent Computer Mathematics. Proceedings. Vol. 7961 of Lecture Notes in Computer Science, 2013.

A. Pease, A. Aberdeen and U. Martin. Explanation in mathematical conversations: An empirical investigation. Philosophical Transactions of the Royal Society A, 2018

How do mathematicians communicate?

What do mathematicians talk about?

How do mathematicians explain things?

References