Towards computer-assisted proofs of parametric Andrews-Curtis simplifications

Alexei Lisitsa
University of Liverpool
AITP 2023, Aussois, 04.09.2023

Andrews-Curtis Conjecture. Preliminaries

For a group presentation $\left\langle x_{1}, \ldots, x_{n} ; r_{1}, \ldots r_{m}\right\rangle$ with generators x_{i}, and relators r_{j}, consider the following transformations.

AC1 Replace some r_{i} by r_{i}^{-1}.
AC2 Replace some r_{i} by $r_{i} \cdot r_{j}, j \neq i$.
AC3 Replace some r_{i} by $w \cdot r_{i} \cdot w^{-1}$ where w is any word in the generators.
AC4 Introduce a new generator y and relator y or delete a generator y and relator y.

Andrews-Curtis Conjecture

- Two presentations g and g^{\prime} are called Andrews-Curtis equivalent ($A C$-equivalent) if one of them can be obtained from the other by applying a finite sequence of transformations of the types (AC1) (AC3). Two presentations are stably $A C$-equivalent if one of them can be obtained from the other by applying a finite sequence of transformations of the types (AC1) - (AC4).
- A group presentation $g=\left\langle x_{1}, \ldots, x_{n} ; r_{1}, \ldots r_{m}\right\rangle$ is called balanced if $n=m$, that is a number of generators is the same as a number of relators. Such n we call a dimension of g and denote by $\operatorname{Dim}(g)$.

Conjecture (1965)
 if $\left\langle x_{1}, \ldots, x_{n} ; r_{1}, \ldots r_{n}\right\rangle$ is a balanced presentation of the trivial group it is (stably) AC-equivalent to the trivial presentation $\left\langle x_{1}, \ldots, x_{n} ; x_{1}, \ldots x_{n}\right\rangle$.

Trivial Example

- $\langle a, b \mid a b, b\rangle \rightarrow\left\langle a, b \mid a b, b^{-1}\right\rangle \rightarrow\left\langle a, b \mid a, b^{-1}\right\rangle \rightarrow\langle a, b \mid a, b\rangle$

AC-conjecture: short profile

- AC-conjecture is open

AC-conjecture: short profile

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)

AC-conjecture: short profile

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)
- Series of potential counterexamples; smallest for which simplification is unknown is AK-3: $\left\langle x, y \mid x y x y^{-1} x^{-1} y^{-1}, x^{3} y^{-4}\right\rangle$

AC-conjecture: short profile

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)
- Series of potential counterexamples; smallest for which simplification is unknown is AK-3: $\left\langle x, y \mid x y x y^{-1} x^{-1} y^{-1}, x^{3} y^{-4}\right\rangle$
- How to find simplifications, algorithmically?

AC-conjecture: short profile

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)
- Series of potential counterexamples; smallest for which simplification is unknown is AK-3: $\left\langle x, y \mid x y x y^{-1} x^{-1} y^{-1}, x^{3} y^{-4}\right\rangle$
- How to find simplifications, algorithmically?
- If a simplification exists, it could be found by the exhaustive search/total enumeration (iterative deepening)
- The issue: simplifications could be very long (Bridson 2015; Lishak 2015)

Search of trivializations and elimination of counterexamples

- Genetic search algorithms (Miasnikov 1999; Swan et al. 2012)
- Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006)
- Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001)
- Generalized moves and strong equivalence relations (Panteleev-Ushakov, 2016)
- ...

Search of trivializations and elimination of counterexamples

- Genetic search algorithms (Miasnikov 1999; Swan et al. 2012)
- Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006)
- Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001)
- Generalized moves and strong equivalence relations (Panteleev-Ushakov, 2016)
- . . .

Our approach: apply generic automated reasoning instead of specialized algorithms (L,2018-..)
Our Claim: generic automated reasoning is (very) competitive

ACT rewriting system, dim $=2$

Equational theory of groups T_{G} :

- $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
- $x \cdot e=x$
- $e \cdot x=x$
- $x \cdot r(x)=e$

For each $n \geq 2$ we formulate a term rewriting system modulo T_{G}, which captures AC-transformations of presentations of dimension n.
For an alphabet $A=\left\{a_{1}, a_{2}\right\}$ a term rewriting system $A C T_{2}$ consists the following rules:

$$
\begin{aligned}
\text { R1L } f(x, y) & \rightarrow f(r(x), y)) \\
\text { R1R } f(x, y) & \rightarrow f(x, r(y)) \\
\text { R2L } f(x, y) & \rightarrow f(x \cdot y, y) \\
\text { R2R } f(x, y) & \rightarrow f(x, y \cdot x) \\
\text { R3L }_{i} f(x, y) & \rightarrow f\left(\left(a_{i} \cdot x\right) \cdot r\left(a_{i}\right), y\right) \text { for } a_{i} \in A, i=1,2 \\
\text { R3R }_{i} f(x, y) & \rightarrow f\left(x,\left(a_{i} \cdot y\right) \cdot r\left(a_{i}\right)\right) \text { for } a_{i} \in A, i=1,2
\end{aligned}
$$

AC-transformations as rewriting modulo group theory

The rewrite relation $\rightarrow_{A C T / G}$ for $A C T$ modulo theory T_{G} : $t \rightarrow_{A C T / G} s$ iff there exist $t^{\prime} \in[t]_{G}$ and $s^{\prime} \in[s]_{G}$ such that $t^{\prime} \rightarrow_{A C T} s^{\prime}$.

Reduced $A C T_{2}$

Reduced term rewriting system $r A C T_{2}$ consists of the following rules:

$$
\begin{aligned}
\text { R1L } f(x, y) & \rightarrow f(r(x), y)) \\
\text { R2L } f(x, y) & \rightarrow f(x \cdot y, y) \\
\text { R2R } f(x, y) & \rightarrow f(x, y \cdot x) \\
\text { R3L }_{i} f(x, y) & \rightarrow f\left(\left(a_{i} \cdot x\right) \cdot r\left(a_{i}\right), y\right) \text { for } a_{i} \in A, i=1,2
\end{aligned}
$$

Proposition

Term rewriting systems $A C T_{2}$ and $r A C T_{2}$ considered modulo T_{G} are equivalent, that is $\rightarrow_{A C T_{2} / G}^{*}$ and $\rightarrow_{r A C T_{2} / G}^{*}$ coincide.

Proposition

For ground t_{1} and t_{2} we have $t_{1} \rightarrow_{A C T_{2} / G}^{*} t_{2} \Leftrightarrow t_{2} \rightarrow_{A C T_{2} / G}^{*} t_{1}$, that is $\rightarrow_{A C T_{2} / G}^{*}$ is symmetric.

Equational Translation

Denote by $E_{A C T_{2}}$ an equational theory $T_{G} \cup r A C T=$ where $r A C T=$ includes the following axioms (equality variants of the above rewriting rules):

$$
\begin{aligned}
& \text { E-R1L } f(x, y)=f(r(x), y)) \\
& \text { E-R2L } f(x, y)=f(x \cdot y, y) \\
& \text { E-R2R } f(x, y)=f(x, y \cdot x) \\
& \text { E-R3L }{ }_{i} f(x, y)=f\left(\left(a_{i} \cdot x\right) \cdot r\left(a_{i}\right), y\right) \text { for } a_{i} \in A, i=1,2
\end{aligned}
$$

Proposition

For ground terms t_{1} and $t_{2} t_{1} \rightarrow_{A C T_{2} / G}^{*} t_{2}$ iff $E_{A C T_{2}} \vdash t_{1}=t_{2}$
A variant of the equational translation: replace the axioms $\mathbf{E}-\mathbf{R} 3 L_{\mathbf{i}}$ by "non-ground" axiom $\mathbf{E}-\mathrm{RLZ}: f(x, y)=f((z \cdot x) \cdot r(z), y)$

Implicational Translation

Denote by $I_{A C T_{2}}$ the first-order theory $T_{G} \cup r A C T_{2}$ where $r A C T_{2}$ includes the following axioms:

$$
\begin{array}{ll}
\text { I-R1L } & R(f(x, y)) \rightarrow R(f(r(x), y))) \\
\text { I-R2L } & R(f(x, y)) \rightarrow R(f(x \cdot y, y)) \\
\text { I-R2R } & R(f(x, y)) \rightarrow R(f(x, y \cdot x)) \\
\text { I-R3L }_{i} & R(f(x, y)) \rightarrow R\left(f\left(\left(a_{i} \cdot x\right) \cdot r\left(a_{i}\right), y\right)\right) \text { for } a_{i} \in A, i=1,2
\end{array}
$$

Proposition

For ground terms t_{1} and $t_{2} t_{1} \rightarrow_{A C T_{2} / G}^{*} t_{2}$ iff $I_{A C T_{2}} \vdash R\left(t_{1}\right) \rightarrow R\left(t_{2}\right)$

Automated Reasoning for AC conjecture exploration

For any pair of presentations p_{1} and p_{2},
to establish whether they are AC-equivalent one can formulate and try to solve first-order theorem proving problems

- $E_{A C T_{n}} \vdash t_{p_{1}}=t_{p_{2}}$, or
- $I_{A C T_{n}} \vdash R\left(t_{p_{1}}\right) \rightarrow R\left(t_{p_{2}}\right)$

OR, theorem disproving problems

- $E_{A C T_{n}} \nvdash t_{p_{1}}=t_{p_{2}}$, or
- $I_{A C T_{n}} \nvdash R\left(t_{p_{1}}\right) \rightarrow R\left(t_{p_{2}}\right)$

Automated Reasoning for AC conjecture exploration

For any pair of presentations p_{1} and p_{2}, to establish whether they are AC-equivalent one can formulate and try to solve first-order theorem proving problems

- $E_{A C T_{n}} \vdash t_{p_{1}}=t_{p_{2}}$, or
- $I_{A C T_{n}} \vdash R\left(t_{p_{1}}\right) \rightarrow R\left(t_{p_{2}}\right)$

OR, theorem disproving problems

- $E_{A C T_{n}} \nvdash t_{p_{1}}=t_{p_{2}}$, or
- $I_{A C T_{n}} \nvdash R\left(t_{p_{1}}\right) \rightarrow R\left(t_{p_{2}}\right)$

Our proposal: apply automated reasoning: ATP and finite model building.

Theorem Proving for AC-Simplifications

Elimination of potential counterexamples

- Known cases: We have applied automated theorem proving using Prover9 prover (McCune, 2007) to confirm that all cases eliminated as potential counterexamples in all known literature can be eliminated by our method too.

Theorem Proving for AC－Simplifications（cont．）

New cases（from Edjvet－Swan，2005－2010）：
T14 〈a，b｜ababABB，babaBAA〉
T28 $\langle a, b|$ aabbbbABBBB，bbaaaaBAAAA \rangle
T36 $\langle a, b|$ aababAABB，bbabaBBAA
T62 $\langle a, b|$ aaabbAbABBB，bbbaaBaBAAA \rangle
T74 $\langle a, b|$ aabaabAAABB，bbabbaBBBAA \rangle
T16 $\langle a, b, c \mid A B C a c b b, B C A b a c c, C A B c b a a\rangle$
T21 $\langle a, b, c \mid A B C a b a c, ~ B C A b c b a, C A B c a c b\rangle$
T48 $\langle a, b, c|$ aacbcABCC，bbacaBCAA，ccbabCABB \rangle
T88 $\langle a, b, c|$ aacb $A b C A B, b b a c B c A B C, c c b a C a B C A\rangle$
T89 $\langle a, b, c|$ aacbcACAB，bbacBABC，ccbaCBCA）
T96 〈a，b，c，d｜adCADbc，baDBAcd，cbACBda，dcBDCab〉
T97 $\langle a, b, c, d \mid a d C A b D c, b a D B c A d, c b A C d B a, d c B D a C b\rangle$［ICMS 2018］

Miller-Shupp presentations

- $M S_{n}(w)=\left\langle x, y \mid x^{-1} y^{n} x=y^{n+1}, x=w\right\rangle$ where w is a word in x and y with exponent sum 0 on x , and $n>0$ is a balanced presentation of trivial group (Miller-Shupp, 1999)
- $M S_{n}\left(w_{*}\right)$ is well-known subfamily with $w_{*}=y^{-1} x y x^{-1}$
- $M S_{n}\left(w_{*}\right)$ is AC-trivializable for $n \leq 2$ (Miasnikov 1999; Havas-Ramsay, 2003)
- $M S_{3}\left(w_{*}\right)$ is stably AC-trivializable (Fernández, 2019)

Miller-Shupp presentations

- $M S_{n}(w)=\left\langle x, y \mid x^{-1} y^{n} x=y^{n+1}, x=w\right\rangle$ where w is a word in x and y with exponent sum 0 on x , and $n>0$ is a balanced presentation of trivial group (Miller-Shupp, 1999)
- $M S_{n}\left(w_{*}\right)$ is well-known subfamily with $w_{*}=y^{-1} x y x^{-1}$
- $M S_{n}\left(w_{*}\right)$ is AC-trivializable for $n \leq 2$ (Miasnikov 1999; Havas-Ramsay, 2003)
- $M S_{3}\left(w_{*}\right)$ is stably AC-trivializable (Fernández, 2019)
- We show: $M S_{n}\left(w_{*}\right)$ is AC-trivializable for $\mathbf{n}=3,4,5,6,7$ using automated theorem proving (new).

Miller-Shupp presentations

- $M S_{n}(w)=\left\langle x, y \mid x^{-1} y^{n} x=y^{n+1}, x=w\right\rangle$ where w is a word in x and y with exponent sum 0 on x , and $n>0$ is a balanced presentation of trivial group (Miller-Shupp, 1999)
- $M S_{n}\left(w_{*}\right)$ is well-known subfamily with $w_{*}=y^{-1} x y x^{-1}$
- $M S_{n}\left(w_{*}\right)$ is AC-trivializable for $n \leq 2$ (Miasnikov 1999; Havas-Ramsay, 2003)
- $M S_{3}\left(w_{*}\right)$ is stably AC-trivializable (Fernández, 2019)
- We show: $M S_{n}\left(w_{*}\right)$ is AC-trivializable for $\mathbf{n}=3,4,5,6,7$ using automated theorem proving (new).
- Ultimately we would like to get an inductive proof for all $n \geq 2$ by generalization of automated proofs. We are not there yet.

Something simpler: pseudo Miller-Shupp presentations

- $p M S_{n}(w)=\left\langle x, y \mid x^{-1} y^{n} x=y^{n+1}, x^{-1}=w\right\rangle$ where w is a word in x and y with exponent sum 0 on x, and $n>0$ is a balanced presentation of trivial group
- $p M S_{n}\left(w_{*}\right)$ is a subfamily with $w_{*}=y^{-1} x y x^{-1}$
- We show: $p M S_{n}\left(w_{*}\right)$ is AC-trivializable for all $n>2$ using AR-assisted proof with implicational encoding.

Proof illustration, I

Steps	Lines	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$
1	40	$\left\langle a^{-1} b^{3} a b^{-4}, a b^{-1} a b a^{-1}\right\rangle$	$\left\langle a^{-1} b^{4} a b^{-5}, a b^{-1} a b a^{-1}\right\rangle$	$\left\langle a^{-1} b^{5} a b^{-6}, a b^{-1} a b a^{-1}\right\rangle$
2	45	$\left\langle b^{3} a b^{-4} a^{-1} \cdot a b^{-1} a b a^{-1}\right\rangle$	$\left\langle b^{4} a b^{-5} a^{-1}, a b^{-1} a b a^{-1}\right\rangle$	$\left\langle b^{5} a b^{-6} a^{-1}, a b^{-1} a b a^{-1}\right\rangle$
3	49	$\left(b^{3} a b^{-4} a^{-1}, a b^{-1} a^{-1} b a^{-1}\right)$	$\left\langle b^{4} a b^{-5} a^{-1}, a b^{-1} a^{-1} a b a^{-1}\right\rangle$	$\left\langle b^{5} a b^{-6} a^{-1}, a b^{-1} a^{-1} b a^{-1}\right\rangle$
4	50	$\left(b^{3} a b^{-5} a^{-1} b a^{-1}, a b^{-1} a^{-1} b a^{-1}\right)$	$\left\langle b^{4} a b^{-6} a^{-1} b a^{-1}, a b^{-1} a^{-1} a b a^{-1}\right\rangle$	$\left\langle b^{5} a b^{-7} a^{-1} b a^{-1}, a b^{-1} a^{-1} b a^{-1}\right\rangle$
5	51	$\left(a b^{-1} a b^{5} a^{-1} b^{-3}, a b^{-1} a^{-1} b a^{-1}\right)$	$\left\langle a b^{-1} a b^{6} a^{-1} b^{-4}, a b^{-1} a^{-1} a b a^{-1}\right\rangle$	$\left\langle a b^{-1} a b^{7} a^{-1} b^{-5}, a b^{-1} a^{-1} b a^{-1}\right\rangle$
6	52	$\left\langle a b^{-1} a b^{5} a^{-1} b^{-3}, a b^{4} a^{-1} b^{-3}\right\rangle$	$\left\langle a b^{-1} a b^{6} a^{-1} b^{-4}, a b^{5} a^{-1} b^{-4}\right\rangle$	$\left\langle a b^{-1} a b^{7} a^{-1} b^{-5}, a b^{6} a^{-1} b^{-5}\right\rangle$
7	53	$\left\langle a b^{-1} a b^{5} a^{-1} b^{-3}, b^{3} a b^{-4} a^{-1}\right\rangle$	$\left\langle a b^{-1} a b^{6} a^{-1} b^{-4}, b^{4} a b^{-5} a^{-1}\right\rangle$	$\left\langle a b^{-1} a b^{7} a^{-1} b^{-5}, b^{5} a b^{-6} a^{-1}\right\rangle$
8	54	$\left\langle a b^{-1} a b a^{-1}, b^{3} a b^{-4} a^{-1}\right\rangle$	$\left\langle a b^{-1} a b a^{-1}, b^{4} a b^{-5} a^{-1}\right\rangle$	$\left\langle a b^{-1} a b a^{-1}, b^{5} a b^{-6} a^{-1}\right\rangle$
9	55	($\left.b a b^{-1} a b a^{-1} b^{-1}, b^{3} a b^{-4} a^{-1}\right)$	$\left\langle b a b^{-1} a b a^{-1} b^{-1}, b^{4} a b^{-5} a^{-1}\right\rangle$	$\left\langle b a b^{-1} a b a^{-1} b^{-1}, b^{5} a b^{-5} a^{-1}\right\rangle$
10	56	$\left\langle b^{2} a b^{-1} a b a^{-1} b^{-2}, b^{3} a b^{-4} a^{-1}\right)$	$\left\langle b^{2} a b^{-1} a b a^{-1} b^{-2}, b^{4} a b^{-5} a^{-1}\right\rangle$	$\left\langle b^{2} a b^{-1} a b a^{-1} b^{-2}, b^{5} a b^{-6} a^{-1}\right\rangle$
11	57	$\left\langle b^{3} a b^{-1} a b a^{-1} b^{-3}, b^{3} a b^{-4} a^{-1}\right\rangle$	$\left\langle b^{3} a b^{-1} a b a^{-1} b^{-3}, b^{4} a b^{-5} a^{-1}\right\rangle$	$\left\langle b^{3} a b^{-1} a b a^{-1} b^{-3}, b^{5} a b^{-6} a^{-1}\right\rangle$
12	58	$\left\langle b^{3} a b^{-1} a b^{-3} a^{-1}, b^{3} a b^{-4} a^{-1}\right\rangle$	$\left\langle b^{4} a b^{-1} a b a^{-1} b^{-4}, b^{4} a b^{-5} a^{-1}\right\rangle$	$\left\langle b^{4} a b^{-1} a b a^{-1} b^{-4}, b^{5} a b^{-6} a^{-1}\right\rangle$
13	59	$\left\langle b^{3} a b^{-1} a b^{-3} a^{-1}, a b^{4} a^{-1} b^{-3}\right\rangle$	$\left\langle b^{4} a b^{-1} a b^{-4} a^{-1}, b^{4} a b^{-5} a^{-1}\right\rangle$	($\left.b^{5} a b^{-1} a b a^{-1} b^{-5}, b^{5} a b^{-6} a^{-1}\right\rangle$
14	60	$\left\langle b^{3} a b^{-1} a b^{-3} a^{-1}, a b^{3} a b^{-3} a^{-1}\right\rangle$	$\left\langle b^{4} a b^{-1} a b^{-4} a^{-1}, a b^{5} a^{-1} b^{-4}\right\rangle$	$\left\langle b^{5} a b^{-1} a b^{-5} a^{-1}, b^{5} a b^{-6} a^{-1}\right\rangle$
15	61	$\left\langle b^{3} a b^{-1} a b^{-3} a^{-1}, a b^{3} a^{-1} b^{-3} a^{-1}\right\rangle$	$\left\langle b^{4} a b^{-1} a b^{-4} a^{-1}, a b^{4} a b^{-4} a^{-1}\right\rangle$	$\left\langle b^{5} a b^{-1} a b^{-5} a^{-1}, a b^{6} a^{-1} b^{-5}\right\rangle$
16	62	$\left\langle b^{3} a b^{-4} a^{-1}, a b^{3} a^{-1} b^{-3} a^{-1}\right\rangle$	$\left\langle b^{4} a b^{-1} a b^{-4} a^{-1}, a b^{4} a^{-1} b^{-4} a^{-1}\right\rangle$	$\left\langle b^{5} a b^{-1} a b^{-5} a^{-1}, a b^{5} a b^{-5} a^{-1}\right\rangle$
17	63	$\left\langle a b^{4} a^{-1} b^{-3}, a b^{3} a^{-1} b^{-3} a^{-1}\right\rangle$	$\left\langle b^{4} a b^{-5} a^{-1}, a b^{4} a^{-1} b^{-4} a^{-1}\right\rangle$	$\left\langle b^{5} a b^{-1} a b^{-5} a^{-1}, a b^{5} a^{-1} b^{-5} a^{-1}\right\rangle$
18	64	$\left\langle a b^{4} a^{-1} b^{-3}, a b^{3} a b^{-3} a^{-1}\right\rangle$	$\left\langle a b^{5} a^{-1} b^{-4}, a b^{4} a^{-1} b^{-4} a^{-1}\right\rangle$	$\left\langle b^{5} a b^{-6} a b^{-5} a^{-1}, a b^{5} a^{-1} b^{-5} a^{-1}\right\rangle$
19	65	$\left\langle a^{2} b^{4} a^{-1} b^{-3} a^{-1}, a b^{3} a b^{-3} a^{-1}\right\rangle$	$\left\langle a b^{5} a^{-1} b^{-4}+a b^{4} a b^{-4} a^{-1}\right\rangle$	$\left\langle a b^{5} a^{-1} b^{-5}, a b^{5} a^{-1} b^{-5} a^{-1}\right\rangle$
20	66	$\left\langle a^{2} b a^{-1}, a b^{3} a b^{-3} a^{-1}\right\rangle$	$\left\langle a^{2} b^{5} a^{-1} b^{-4} a^{-1}, a b^{4} a b^{-4} a^{-1}\right\rangle$	$\left\langle a b^{6} a^{-1} b^{-5} \cdot a b^{5} a b^{-5} a^{-1}\right\rangle$
21	67	$\left\langle a^{2} b a^{-1}, a b^{3} a^{-1} b^{-3} a^{-1}\right\rangle$	$\left\langle a^{2} b a^{-1}, a b^{4} a b^{-4} a^{-1}\right\rangle$	$\left\langle a^{2} b^{6} a^{-1} b^{-5} a^{-1}, a b^{5} a b^{-5} a^{-1}\right\rangle$
22	68	$\left\langle a b^{-1} a^{-2}, a b^{3} a^{-1} b^{-3} a^{-1}\right\rangle$	$\left\langle a^{2} b a^{-1}, a b^{4} a^{-1} b^{-4} a^{-1}\right\rangle$	$\left\langle a^{2} b a^{-1}, a b^{5} a b^{-5} a^{-1}\right\rangle$
23	69	$\left\langle a b^{-1} a^{-2}, a b^{3} a^{-1} b^{-4} a^{-2}\right\rangle$	$\left\langle a b^{-1} a^{-2}, a b^{4} a^{-1} b^{-4} a^{-1}\right\rangle$	$\left\langle a^{2} b a^{-1}, a b^{5} a^{-1} b^{-5} a^{-1}\right\rangle$
24	70	$\left\langle a b^{-1} a^{-2}, a^{2} b^{4} a b^{-3} a^{-1}\right\rangle$	$\left\langle a b^{-1} a^{-2}, a b^{4} a^{-1} b^{-5} a^{-2}\right\rangle$	$\left\langle a b^{-1} a^{-2}, a b^{5} a^{-1} b^{-5} a^{-1}\right\rangle$
25	71	$\left\langle a b^{3} a b^{-3} a^{-1}, a^{2} b^{4} a b^{-3} a^{-1}\right\rangle$	$\left\langle a b^{-1} a^{-2}, a^{2} b^{5} a b^{-4} a^{-1}\right\rangle$	$\left\langle a b^{-1} a^{-2}, a b^{5} a^{-1} b^{-6} a^{-2}\right\rangle$
26	72	$\left\langle a b^{3} a^{-1} b^{-3} a^{-1}, a^{2} b^{4} a b^{-3} a^{-1}\right\rangle$	$\left\langle a b^{4} a b^{-4} a^{-1}, a^{2} b^{5} a b^{-4} a^{-1}\right\rangle$	$\left\langle a b^{-1} a^{-2}, a^{2} b^{6} a b^{-5} a^{-1}\right\rangle$
27	73	$\left\langle\mathrm{ab}^{3} \mathrm{a}^{-1} \mathrm{~b}^{-3} \mathrm{a}^{-1}, \mathrm{a}^{2} \mathrm{ba}^{-1}\right\rangle$	$\left\langle a b^{4} a^{-1} b^{-4} a^{-1}, a^{2} b^{5} a b^{-4} a^{-1}\right\rangle$	$\left\langle a b^{5} a b^{-5} a^{-1}, a^{2} b^{6} a b^{-5} a^{-1}\right\rangle$
28	74	$\left\langle a b^{3} a b^{-3} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{4} a^{-1} b^{-4} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{5} a^{-1} b^{-5} a^{-1}, a^{2} b^{6} a b^{-5} a^{-1}\right\rangle$
29	75	$\left(a^{2} b^{3} a b^{-3} a^{-2}, a^{2} b a^{-1}\right)$	$\left\langle a b^{4} a b^{-4} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left(a b^{5} a^{-1} b^{-5} a^{-1}, a^{2} b a^{-1}\right)$
30	76	$\left(a^{2} b^{3} a b^{-2} a^{-1}, a^{2} b a^{-1}\right)$	$\left\langle a^{2} b^{4} a b^{-4} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{5} a b^{-5} a^{-1}, a^{2} b a^{-1}\right\rangle$
31	77	$\left\langle a b^{2} a^{-1} b^{-3} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{4} a b^{-3} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{5} a b^{-5} a^{-2}, a^{2} b a^{-1}\right\rangle$
32	78	$\left\langle a b^{2} a^{-1} b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{3} a^{-1} b^{-4} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{5} a b^{-4} a^{-1}, a^{2} b a^{-1}\right\rangle$
33	79	$\left\langle a b^{2} a b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle\mathrm{ab}^{3} \mathrm{a}^{-1} \mathrm{~b}^{-3} \mathrm{a}^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{4} a^{-1} b^{-5} a^{-2}, a^{2} b a^{-1}\right\rangle$
34	80	$\left(a^{2} b^{2} a b^{-2} a^{-2}, a^{2} b a^{-1}\right)$	$\left\langle a b^{3} a b^{-3} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{4} a^{-1} b^{-4} a^{-1}, a^{2} b a^{-1}\right\rangle$
35	81	$\left\langle a^{2} b^{2} a b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{3} a b^{-3} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{4} a b^{-4} a^{-1}, a^{2} b a^{-1}\right\rangle$
36	82	$\left\langle a b a^{-1} b^{-2} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{3} a b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{4} a b^{-4} a^{-2}, a^{2} b a^{-1}\right\rangle$
37	83	$\left\langle a b a^{-1} b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{2} a^{-1} b^{-3} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{4} a b^{-3} a^{-1}, a^{2} b a^{-1}\right\rangle$
38	84	$\left\langle a b a b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{2} a^{-1} b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{3} a^{-1} b^{-4} a^{-2}, a^{2} b a^{-1}\right\rangle$
39	85	$\left\langle a^{2} b a b^{-1} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{2} a b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle\mathrm{ab}^{3} \mathrm{a}^{-1} \mathrm{~b}^{-3} \mathrm{a}^{-1}, \mathrm{a}^{2} \mathrm{ba}^{-1}\right\rangle$

Proof illustration, II

Steps	Lines	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$
40	86	$\left\langle a^{2} b, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{2} a b^{-2} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{3} a b^{-3} a^{-1}, a^{2} b a^{-1}\right\rangle$
41	87	$\left\langle a^{2} b, a b^{-1} a^{-2}\right\rangle$	$\left\langle a^{2} b^{2} a b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{3} a b^{-3} a^{-2}, a^{2} b a^{-1}\right\rangle$
42	88	$\left\langle a^{2} b, a\right\rangle$	$\left\langle a b a^{-1} b^{-2} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{3} a b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$
43	89	$\left\langle b a^{2}, a\right\rangle$	$\left\langle a b a^{-1} b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{2} a^{-1} b^{-3} a^{-2}, a^{2} b a^{-1}\right\rangle$
44	90	$\left\langle b a^{2}, a^{-1}\right\rangle$	$\left\langle a b a b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{2} a^{-1} b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$
45	91	$\left\langle b a, a^{-1}\right\rangle$	$\left\langle a^{2} b a b^{-1} a^{-2}, a^{2} b a^{-1}\right\rangle$	$\left\langle a b^{2} a b^{-2} a^{-1}, a^{2} b a^{-1}\right\rangle$
46	92	$\left\langle a b, a^{-1}\right\rangle$	$\left\langle a^{2} b, a^{2} b a^{-1}\right\rangle$	$\left\langle a^{2} b^{2} a b^{-2} a^{-2}, a^{2} b a^{-1}\right\rangle$
47	93	$\langle a b, b\rangle$	$\left\langle a^{2} b, a b^{-1} a^{-2}\right\rangle$	$\left\langle a^{2} b^{2} a b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$
48	94	$\left\langle a b, b^{-1}\right\rangle$	$\left\langle a^{2} b, a\right\rangle$	$\left\langle a b a^{-1} b^{-2} a^{-2}, a^{2} b a^{-1}\right\rangle$
49	95	$\left\langle a, b^{-1}\right\rangle$	$\left\langle b a^{2}, a\right\rangle$	$\left\langle a b a^{-1} b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$
50	96	$\langle a, b\rangle$	$\left\langle b a^{2}, a^{-1}\right\rangle$	$\left\langle a b a b^{-1} a^{-1}, a^{2} b a^{-1}\right\rangle$
51	97		$\left\langle b a, a^{-1}\right\rangle$	$\left\langle a^{2} b a b^{-1} a^{-2}, a^{2} b a^{-1}\right\rangle$
52	98		$\left\langle a b, a^{-1}\right\rangle$	$\left\langle a^{2} b, a^{2} b a^{-1}\right\rangle$
53	99		$\langle a b, b\rangle$	$\left\langle a^{2} b, a b^{-1} a^{-2}\right\rangle$
54	100		$\left\langle a b, b^{-1\rangle}\right.$	$\left\langle a^{2} b, a\right\rangle$
55	101		$\left\langle a, b^{-1}\right\rangle$	$\left\langle b a^{2}, a\right\rangle$
56	102		$\langle a, b\rangle$	$\left\langle b a^{2}, a^{-1}\right\rangle$
57	103			$\left\langle b a, a^{-1}\right\rangle$
58	104		$\left\langle a b, a^{-1}\right\rangle$	
59	105		$\langle a b, b\rangle$	
60	106			$\left\langle a b, b^{-1}\right\rangle$
61	107			$\langle a, b\rangle$
62	108			

Table 3. Configurations/presentations reached in proofs at steps $40-62(\mathrm{n}=3,4,5)$

Not so simple!

Implicational encoding of $M S_{n}\left(w_{*}\right)$ for $2 \leq n \leq 6$

n	simplification steps	time, s
2	34	0.05
3	85	0.66
4	242	5.97
5	573	265
6	1282	10637

Equational encoding of $M S_{7}\left(w_{*}\right)$

n	simplification macrosteps	time, s
7	892	42681

- Equational proof uses multiple lemmas, each corresponding to a macrostep in AC-simplifications
- Example of a lemma: $f\left(x^{*} y, y^{*}\left(z^{*}\left(y^{*} x^{\prime}\right)\right)\right)=f\left(x^{*} y, x^{*}\left(x^{*}\left(x^{*} z\right)\right)\right)$.

Observations and conjectures

Conjecture

All presentations $M S_{n}\left(w_{*}\right)$ are AC-trivializable for $n \geq 3$ using the following sequence of transformations
$M S_{n}\left(w_{*}\right) \Rightarrow^{*}\left\langle a, b \mid b^{-(n-1)} a^{-4} b a, w_{1}\right\rangle \Rightarrow^{*} \ldots \Rightarrow^{*}$
$\left\langle a, b \mid b^{-(n-k)} a^{-4} b a, w_{k}\right\rangle \Rightarrow^{*} \ldots \Rightarrow^{*}\left\langle a, b \mid b^{-2} a^{-4} b a, w_{n-2}\right\rangle \Rightarrow^{*}\langle a, b \mid a, b\rangle$,
$k=1 \ldots n-2$, where $w_{k}=a^{-1} b^{-1} a b a^{-1}$ or $w_{k}=a b^{-1} a^{-1} b a$.
Supported by obtained simplifications for $n=3,4,5$
Example ($n=5$):
$\Rightarrow^{*}\left\langle a, b \mid b^{-4} a^{-4} b a, w_{1}\right\rangle \Rightarrow^{*}\left\langle a, b \mid b^{-3} a^{-4} b a, w_{2}\right\rangle \Rightarrow^{*}\left\langle a, b \mid b^{-2} a^{-4} b a, w_{3}\right\rangle$
$\Rightarrow^{*}\langle a, b \mid a, b\rangle$

Conclusion

- Automated Proving and Disproving is an interesting and powerful approach to AC-conjecture exploration;
- Source of interesting challenging problems for ATP/ATD;
- Can ML/DM help to guide the proofs and understand the proofs?
- Does AC -conjecture hold true for all $M S_{n}\left(w_{*}\right), \mathrm{n}>0$?

Conclusion

- Automated Proving and Disproving is an interesting and powerful approach to AC-conjecture exploration;
- Source of interesting challenging problems for ATP/ATD;
- Can ML/DM help to guide the proofs and understand the proofs?
- Does AC-conjecture hold true for all $M S_{n}\left(w_{*}\right), \mathrm{n}>0$?

> Thank you!

