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Andrews-Curtis Conjecture. Preliminaries

For a group presentation 〈x1, . . . , xn; r1, . . . rm〉 with generators xi , and
relators rj , consider the following transformations.

AC1 Replace some ri by r−1
i .

AC2 Replace some ri by ri · rj , j 6= i .
AC3 Replace some ri by w · ri · w−1 where w is any word in the

generators.
AC4 Introduce a new generator y and relator y or delete a

generator y and relator y .
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Andrews-Curtis Conjecture

Two presentations g and g ′ are called Andrews-Curtis equivalent
(AC-equivalent) if one of them can be obtained from the other by
applying a finite sequence of transformations of the types (AC1) -
(AC3). Two presentations are stably AC-equivalent if one of them can
be obtained from the other by applying a finite sequence of
transformations of the types (AC1) - (AC4).
A group presentation g = 〈x1, . . . , xn; r1, . . . rm〉 is called balanced if
n = m, that is a number of generators is the same as a number of
relators. Such n we call a dimension of g and denote by Dim(g).

Conjecture (1965)
if 〈x1, . . . , xn; r1, . . . rn〉 is a balanced presentation of the trivial group it is
(stably) AC-equivalent to the trivial presentation 〈x1, . . . , xn; x1, . . . xn〉.
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Trivial Example

〈a, b | ab, b〉 → 〈a, b | ab, b−1〉 → 〈a, b | a, b−1〉 → 〈a, b | a, b〉
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AC-conjecture: short profile

AC-conjecture is open

AC-conjecture may well be false (prevalent opinion of experts?)
Series of potential counterexamples; smallest for which simplification
is unknown is AK-3: 〈x , y |xyxy−1x−1y−1, x3y−4〉
How to find simplifications, algorithmically?
If a simplification exists, it could be found by the exhaustive
search/total enumeration (iterative deepening)
The issue: simplifications could be very long (Bridson 2015; Lishak
2015)
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Search of trivializations and elimination of counterexamples

Genetic search algorithms (Miasnikov 1999; Swan et al. 2012)
Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006)
Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001)
Generalized moves and strong equivalence relations
(Panteleev-Ushakov, 2016)
. . .

Our approach: apply generic automated reasoning instead of specialized
algorithms (L,2018-..)
Our Claim: generic automated reasoning is (very) competitive
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ACT rewriting system, dim =2
Equational theory of groups TG :

(x · y) · z = x · (y · z)
x · e = x

e · x = x

x · r(x) = e

For each n ≥ 2 we formulate a term rewriting system modulo TG , which
captures AC-transformations of presentations of dimension n.
For an alphabet A = {a1, a2} a term rewriting system ACT2 consists the
following rules:

R1L f (x , y)→ f (r(x), y))

R1R f (x , y)→ f (x , r(y))

R2L f (x , y)→ f (x · y , y)
R2R f (x , y)→ f (x , y · x)
R3Li f (x , y)→ f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2
R3Ri f (x , y)→ f (x , (ai · y) · r(ai )) for ai ∈ A, i = 1, 2
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AC-transformations as rewriting modulo group theory

The rewrite relation →ACT/G for ACT modulo theory TG :
t →ACT/G s iff there exist t ′ ∈ [t]G and s ′ ∈ [s]G such that t ′ →ACT s ′.
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Reduced ACT2

Reduced term rewriting system rACT2 consists of the following rules:

R1L f (x , y)→ f (r(x), y))

R2L f (x , y)→ f (x · y , y)
R2R f (x , y)→ f (x , y · x)
R3Li f (x , y)→ f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2

Proposition
Term rewriting systems ACT2 and rACT2 considered modulo TG are
equivalent, that is →∗ACT2/G

and →∗rACT2/G
coincide.

Proposition
For ground t1 and t2 we have t1 →∗ACT2/G

t2 ⇔ t2 →∗ACT2/G
t1, that is

→∗ACT2/G
is symmetric.
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Equational Translation

Denote by EACT2 an equational theory TG ∪ rACT= where rACT= includes
the following axioms (equality variants of the above rewriting rules):

E-R1L f (x , y) = f (r(x), y))

E-R2L f (x , y) = f (x · y , y)
E-R2R f (x , y) = f (x , y · x)
E-R3Li f (x , y) = f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2

Proposition
For ground terms t1 and t2 t1 →∗ACT2/G

t2 iff EACT2 ` t1 = t2

A variant of the equational translation: replace the axioms E− R3Li by
“non-ground" axiom E− RLZ : f (x , y) = f ((z · x) · r(z), y)
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Implicational Translation

Denote by IACT2 the first-order theory TG ∪ rACT→2 where rACT→2
includes the following axioms:

I-R1L R(f (x , y))→ R(f (r(x), y)))

I-R2L R(f (x , y))→ R(f (x · y , y))
I-R2R R(f (x , y))→ R(f (x , y · x))
I-R3Li R(f (x , y))→ R(f ((ai · x) · r(ai ), y)) for ai ∈ A, i = 1, 2

Proposition
For ground terms t1 and t2 t1 →∗ACT2/G

t2 iff IACT2 ` R(t1)→ R(t2)
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Automated Reasoning for AC conjecture exploration

For any pair of presentations p1 and p2,
to establish whether they are AC-equivalent one can formulate and try to
solve first-order theorem proving problems

EACTn ` tp1 = tp2 , or
IACTn ` R(tp1)→ R(tp2)

OR, theorem disproving problems

EACTn 6` tp1 = tp2 , or
IACTn 6` R(tp1)→ R(tp2)

Our proposal: apply automated reasoning: ATP and finite model building.
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Theorem Proving for AC-Simplifications

Elimination of potential counterexamples

Known cases: We have applied automated theorem proving using
Prover9 prover (McCune, 2007) to confirm that all cases eliminated as
potential counterexamples in all known literature can be eliminated by
our method too.
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Theorem Proving for AC-Simplifications (cont.)

New cases (from Edjvet-Swan, 2005-2010):

T14 〈a, b | ababABB, babaBAA〉
T28 〈a, b | aabbbbABBBB, bbaaaaBAAAA〉
T36 〈a, b | aababAABB, bbabaBBAA〉
T62 〈a, b | aaabbAbABBB, bbbaaBaBAAA〉
T74 〈a, b | aabaabAAABB, bbabbaBBBAA〉

T16 〈a, b, c | ABCacbb,BCAbacc ,CABcbaa〉
T21 〈a, b, c | ABCabac,BCAbcba,CABcacb〉
T48 〈a, b, c | aacbcABCC , bbacaBCAA, ccbabCABB〉
T88 〈a, b, c | aacbAbCAB, bbacBcABC , ccbaCaBCA〉
T89 〈a, b, c | aacbcACAB, bbacBABC , ccbaCBCA〉

T96 〈a, b, c , d | adCADbc, baDBAcd , cbACBda, dcBDCab〉
T97 〈a, b, c , d | adCAbDc, baDBcAd , cbACdBa, dcBDaCb〉 [ICMS 2018]
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Miller-Shupp presentations

MSn(w) = 〈x , y | x−1ynx = yn+1, x = w〉 where w is a word in x and
y with exponent sum 0 on x, and n > 0 is a balanced presentation of
trivial group (Miller-Shupp, 1999)
MSn(w∗) is well-known subfamily with w∗ = y−1xyx−1

MSn(w∗) is AC-trivializable for n ≤ 2 (Miasnikov 1999;
Havas-Ramsay, 2003)
MS3(w∗) is stably AC-trivializable (Fernández, 2019)

We show: MSn(w∗) is AC-trivializable for n=3,4,5,6,7 using
automated theorem proving (new).
Ultimately we would like to get an inductive proof for all n ≥ 2
by generalization of automated proofs. We are not there yet.
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Something simpler: pseudo Miller-Shupp presentations

pMSn(w) = 〈x , y | x−1ynx = yn+1, x−1 = w〉 where w is a word in x
and y with exponent sum 0 on x, and n > 0 is a balanced presentation
of trivial group
pMSn(w∗) is a subfamily with w∗ = y−1xyx−1

We show: pMSn(w∗) is AC-trivializable for all n > 2 using
AR-assisted proof with implicational encoding.
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Proof illustration, I
Steps Lines n=3 n=4 n=5

1 40 ⟨a-1b3ab-4, ab-1aba-1⟩ ⟨a−1b4ab−5, ab−1aba−1⟩ ⟨a−1b5ab−6, ab−1aba−1⟩
2 45 ⟨b3ab−4a−1, ab−1aba−1⟩ ⟨b4ab−5a−1, ab−1aba−1⟩ ⟨b5ab−6a−1, ab−1aba−1⟩
3 49 ⟨b3ab−4a−1, ab−1a−1ba−1⟩ ⟨b4ab−5a−1, ab−1a−1aba−1⟩ ⟨b5ab−6a−1, ab−1a−1ba−1⟩
4 50 ⟨b3ab−5a−1ba−1, ab−1a−1ba−1⟩ ⟨b4ab−6a−1ba−1, ab−1a−1aba−1⟩ ⟨b5ab−7a−1ba−1, ab−1a−1ba−1⟩
5 51 ⟨ab−1ab5a−1b−3, ab−1a−1ba−1⟩ ⟨ab−1ab6a−1b−4, ab−1a−1aba−1⟩ ⟨ab−1ab7a−1b−5, ab−1a−1ba−1⟩
6 52 ⟨ab−1ab5a−1b−3, ab4a−1b−3⟩ ⟨ab−1ab6a−1b−4, ab5a−1b−4⟩ ⟨ab−1ab7a−1b−5, ab6a−1b−5⟩
7 53 ⟨ab−1ab5a−1b−3, b3ab−4a−1⟩ ⟨ab−1ab6a−1b−4, b4ab−5a−1⟩ ⟨ab−1ab7a−1b−5, b5ab−6a−1⟩
8 54 ⟨ab−1aba−1, b3ab−4a−1⟩ ⟨ab−1aba−1, b4ab−5a−1⟩ ⟨ab−1aba−1, b5ab−6a−1⟩
9 55 ⟨bab−1aba−1b−1, b3ab−4a−1⟩ ⟨bab−1aba−1b−1, b4ab−5a−1⟩ ⟨bab−1aba−1b−1, b5ab−6a−1⟩
10 56 ⟨b2ab−1aba−1b−2, b3ab−4a−1⟩ ⟨b2ab−1aba−1b−2, b4ab−5a−1⟩ ⟨b2ab−1aba−1b−2, b5ab−6a−1⟩
11 57 ⟨b3ab−1aba−1b−3, b3ab−4a−1⟩ ⟨b3ab−1aba−1b−3, b4ab−5a−1⟩ ⟨b3ab−1aba−1b−3, b5ab−6a−1⟩
12 58 ⟨b3ab−1ab−3a−1, b3ab−4a−1⟩ ⟨b4ab−1aba−1b−4, b4ab−5a−1⟩ ⟨b4ab−1aba−1b−4, b5ab−6a−1⟩
13 59 ⟨b3ab−1ab−3a−1, ab4a−1b−3⟩ ⟨b4ab−1ab−4a−1, b4ab−5a−1⟩ ⟨b5ab−1aba−1b−5, b5ab−6a−1⟩
14 60 ⟨b3ab−1ab−3a−1, ab3ab−3a−1⟩ ⟨b4ab−1ab−4a−1, ab5a−1b−4⟩ ⟨b5ab−1ab−5a−1, b5ab−6a−1⟩
15 61 ⟨b3ab−1ab−3a−1, ab3a−1b−3a−1⟩ ⟨b4ab−1ab−4a−1, ab4ab−4a−1⟩ ⟨b5ab−1ab−5a−1, ab6a−1b−5⟩
16 62 ⟨b3ab−4a−1, ab3a−1b−3a−1⟩ ⟨b4ab−1ab−4a−1, ab4a−1b−4a−1⟩ ⟨b5ab−1ab−5a−1, ab5ab−5a−1⟩
17 63 ⟨ab4a−1b−3, ab3a−1b−3a−1⟩ ⟨b4ab−5a−1, ab4a−1b−4a−1⟩ ⟨b5ab−1ab−5a−1, ab5a−1b−5a−1⟩
18 64 ⟨ab4a−1b−3, ab3ab−3a−1⟩ ⟨ab5a−1b−4, ab4a−1b−4a−1⟩ ⟨b5ab−6ab−5a−1, ab5a−1b−5a−1⟩
19 65 ⟨a2b4a−1b−3a−1, ab3ab−3a−1⟩ ⟨ab5a−1b−4, ab4ab−4a−1⟩ ⟨ab6a−1b−5, ab5a−1b−5a−1⟩
20 66 ⟨a2ba−1, ab3ab−3a−1⟩ ⟨a2b5a−1b−4a−1, ab4ab−4a−1⟩ ⟨ab6a−1b−5, ab5ab−5a−1⟩
21 67 ⟨a2ba−1, ab3a−1b−3a−1⟩ ⟨a2ba−1, ab4ab−4a−1⟩ ⟨a2b6a−1b−5a−1, ab5ab−5a−1⟩
22 68 ⟨ab−1a−2, ab3a−1b−3a−1⟩ ⟨a2ba−1, ab4a−1b−4a−1⟩ ⟨a2ba−1, ab5ab−5a−1⟩
23 69 ⟨ab−1a−2, ab3a−1b−4a−2⟩ ⟨ab−1a−2, ab4a−1b−4a−1⟩ ⟨a2ba−1, ab5a−1b−5a−1⟩
24 70 ⟨ab−1a−2, a2b4ab−3a−1⟩ ⟨ab−1a−2, ab4a−1b−5a−2⟩ ⟨ab−1a−2, ab5a−1b−5a−1⟩
25 71 ⟨ab3ab−3a−1, a2b4ab−3a−1⟩ ⟨ab−1a−2, a2b5ab−4a−1⟩ ⟨ab−1a−2, ab5a−1b−6a−2⟩
26 72 ⟨ab3a−1b−3a−1, a2b4ab−3a−1⟩ ⟨ab4ab−4a−1, a2b5ab−4a−1⟩ ⟨ab−1a−2, a2b6ab−5a−1⟩
27 73 ⟨ab3a−1b−3a−1,a2ba−1⟩ ⟨ab4a−1b−4a−1, a2b5ab−4a−1⟩ ⟨ab5ab−5a−1, a2b6ab−5a−1⟩
28 74 ⟨ab3ab−3a−1, a2ba−1⟩ ⟨ab4a−1b−4a−1, a2ba−1⟩ ⟨ab5a−1b−5a−1, a2b6ab−5a−1⟩
29 75 ⟨a2b3ab−3a−2, a2ba−1⟩ ⟨ab4ab−4a−1, a2ba−1⟩ ⟨ab5a−1b−5a−1, a2ba−1⟩
30 76 ⟨a2b3ab−2a−1, a2ba−1⟩ ⟨a2b4ab−4a−2, a2ba−1⟩ ⟨ab5ab−5a−1, a2ba−1⟩
31 77 ⟨ab2a−1b−3a−2, a2ba−1⟩ ⟨a2b4ab−3a−1, a2ba−1⟩ ⟨a2b5ab−5a−2, a2ba−1⟩
32 78 ⟨ab2a−1b−2a−1, a2ba−1⟩ ⟨ab3a−1b−4a−2, a2ba−1⟩ ⟨a2b5ab−4a−1, a2ba−1⟩
33 79 ⟨ab2ab−2a−1, a2ba−1⟩ ⟨ab3a−1b−3a−1,a2ba−1⟩ ⟨ab4a−1b−5a−2, a2ba−1⟩
34 80 ⟨a2b2ab−2a−2, a2ba−1⟩ ⟨ab3ab−3a−1, a2ba−1⟩ ⟨ab4a−1b−4a−1, a2ba−1⟩
35 81 ⟨a2b2ab−1a−1, a2ba−1⟩ ⟨a2b3ab−3a−2, a2ba−1⟩ ⟨ab4ab−4a−1, a2ba−1⟩
36 82 ⟨aba−1b−2a−2, a2ba−1⟩ ⟨a2b3ab−2a−1, a2ba−1⟩ ⟨a2b4ab−4a−2, a2ba−1⟩
37 83 ⟨aba−1b−1a−1, a2ba−1⟩ ⟨ab2a−1b−3a−2, a2ba−1⟩ ⟨a2b4ab−3a−1, a2ba−1⟩
38 84 ⟨abab−1a−1, a2ba−1⟩ ⟨ab2a−1b−2a−1, a2ba−1⟩ ⟨ab3a−1b−4a−2, a2ba−1⟩
39 85 ⟨a2bab−1a−2, a2ba−1⟩ ⟨ab2ab−2a−1, a2ba−1⟩ ⟨ab3a−1b−3a−1,a2ba−1⟩
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Proof illustration, II

Steps Lines n=3 n=4 n=5

40 86 ⟨a2b, a2ba−1⟩ ⟨a2b2ab−2a−2, a2ba−1⟩ ⟨ab3ab−3a−1, a2ba−1⟩
41 87 ⟨a2b, ab−1a−2⟩ ⟨a2b2ab−1a−1, a2ba−1⟩ ⟨a2b3ab−3a−2, a2ba−1⟩
42 88 ⟨a2b, a⟩ ⟨aba−1b−2a−2, a2ba−1⟩ ⟨a2b3ab−2a−1, a2ba−1⟩
43 89 ⟨ba2, a⟩ ⟨aba−1b−1a−1, a2ba−1⟩ ⟨ab2a−1b−3a−2, a2ba−1⟩
44 90 ⟨ba2, a−1⟩ ⟨abab−1a−1, a2ba−1⟩ ⟨ab2a−1b−2a−1, a2ba−1⟩
45 91 ⟨ba, a−1⟩ ⟨a2bab−1a−2, a2ba−1⟩ ⟨ab2ab−2a−1, a2ba−1⟩
46 92 ⟨ab, a−1⟩ ⟨a2b, a2ba−1⟩ ⟨a2b2ab−2a−2, a2ba−1⟩
47 93 ⟨ab, b⟩ ⟨a2b, ab−1a−2⟩ ⟨a2b2ab−1a−1, a2ba−1⟩
48 94 ⟨ab, b−1⟩ ⟨a2b, a⟩ ⟨aba−1b−2a−2, a2ba−1⟩
49 95 ⟨a, b−1⟩ ⟨ba2, a⟩ ⟨aba−1b−1a−1, a2ba−1⟩
50 96 ⟨a, b⟩ ⟨ba2, a−1⟩ ⟨abab−1a−1, a2ba−1⟩
51 97 ⟨ba, a−1⟩ ⟨a2bab−1a−2, a2ba−1⟩
52 98 ⟨ab, a−1⟩ ⟨a2b, a2ba−1⟩
53 99 ⟨ab, b⟩ ⟨a2b, ab−1a−2⟩
54 100 ⟨ab, b−1⟩ ⟨a2b, a⟩
55 101 ⟨a, b−1⟩ ⟨ba2, a⟩
56 102 ⟨a, b⟩ ⟨ba2, a−1⟩
57 103 ⟨ba, a−1⟩
58 104 ⟨ab, a−1⟩
59 105 ⟨ab, b⟩
60 106 ⟨ab, b−1⟩
61 107 ⟨a, b−1⟩
62 108 ⟨a, b⟩

Table 3. Configurations/presentations reached in proofs at steps 40–62 (n=3,4,5)
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Back to real (not pseudo) MSn(w∗) presentations

Not so simple!
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Implicational encoding of MSn(w∗) for 2 ≤ n ≤ 6

n simplification steps time, s
2 34 0.05
3 85 0.66
4 242 5.97
5 573 265
6 1282 10637
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Equational encoding of MS7(w∗)

n simplification macrosteps time, s
7 892 42681

Equational proof uses multiple lemmas, each corresponding to a
macrostep in AC-simplifications
Example of a lemma:
f(x * y,y * (z’ * (y * x’))) = f(x * y,x * (x * (x * z))).
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Observations and conjectures

Conjecture
All presentations MSn(w∗) are AC-trivializable for n ≥ 3 using the following
sequence of transformations
MSn(w∗)⇒∗ 〈a, b|b−(n−1)a−4ba,w1〉 ⇒∗ . . .⇒∗
〈a, b|b−(n−k)a−4ba,wk〉 ⇒∗ . . .⇒∗ 〈a, b|b−2a−4ba,wn−2〉 ⇒∗ 〈a, b|a, b〉,
k = 1 . . . n − 2, where wk = a−1b−1aba−1 or wk = ab−1a−1ba.

Supported by obtained simplifications for n=3,4,5

Example (n=5):
⇒∗ 〈a, b|b−4a−4ba,w1〉 ⇒∗ 〈a, b|b−3a−4ba,w2〉 ⇒∗ 〈a, b|b−2a−4ba,w3〉
⇒∗ 〈a, b|a, b〉
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Conclusion

Automated Proving and Disproving is an interesting and powerful
approach to AC-conjecture exploration;
Source of interesting challenging problems for ATP/ATD;
Can ML/DM help to guide the proofs and understand the proofs?
Does AC-conjecture hold true for all MSn(w∗), n> 0?

Thank you!
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