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Abstract

We present improvements for a self-learning algorithm for synthesizing programs for
integer sequences. It discovers on its own programs for more than 90,000 OEIS sequences.

Introduction The search for abstract patterns is one of the principal occupations of mathe-
maticians. The discovery of similar patterns across different mathematical fields often leads to
surprising connections. When a symbolic representation (e.g. formula) describing a pattern is
found, a mathematician can start reasoning and deriving additional facts about the theory in
which the pattern occurs. Integer sequences are a very common kind of mathematical patterns.
A compilation of such sequences is available in the On-Line Encyclopedia of Integer Sequences
OEIS [11] curated by Neil Sloane. Our initial system was able to discover initially patterns, in
the form of programs, for 27,000 sequences [5]. In this abstract, we present improvements made
to the self-learning system, leading it to discover from scratch programs and explanations for
more than 90,000 sequences [3].

Programming Language The programs are synthesized using a programming language
containing a few primitives. This facilitate the learning and encourage the system to come
up with its own solutions for more complex programs (e.g. prime numbers). It contains the
constants 0, 1, 2, the functions +, −, ×, div , mod , two arbitrary-precision integers variables
x, y, the conditional operator cond and three looping operators loop, loop2 , compr . To generate
a sequence of integers, we take a program p that represents a function f : Z→ Z and compute
f(0), f(1), f(2), etc. If these outputs match all the terms provided for an OEIS sequence on its
OEIS web interface, we say that the OEIS sequence has a solution.

Our Approach To find programs generating integer sequences, our approach relies on a
self-learning loop that alternates between three phases. During the search phase, a neural
network synthesizes programs for targeted sequences. Then, during the checking phase, the
proposed programs are checked to see if they generate their target sequence, or any other OEIS
sequences. In the learning phase, a neural network trains on these examples to translate the
“solved” OEIS sequences into the best (e.g. smallest) discovered program(s) generating it. This
updates the weights of the network which influences the next search phase. Each iteration of
the self-learning loop leads to the discovery of more solutions, as well as to the optimization of
the existing solutions. This approach differs from inductive logic programming systems (such as
Popper [10]) as we use statistical learning across many instances to arrive to a solution instead
of trying to find logical patterns from a single instance (sequence).

Improvements We have replaced a tree neural network (TNN) [2] by a neural machine
translation model (NMT)) [9]. We run the NMT on GPU using larger embeddings (500 vs 64)
The NMT is also trained on both the fastest and smallest solutions (instead of only the smallest)
for each sequence leading to the discovery of faster programs. Other technical improvements
include different training strategies and faster checking techniques.
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Results After multiple months of self-learning, The NMT run has currently reached 90000
solutions and is still finding more than 100 solutions every day. By analyzing the solutions, we
found that the NMT essentially relied a lot on synthesizing pairing functions to create complex
programs. This allows it to essentially use an arbitrary number variables (our language has only
two variables) by encoding multiple variables into one. Given 100 additional terms provided in
OEIS b-files for 40,577 sequences, we measure the percentage of generalizing programs (produc-
ing matching additional terms) to be 90.57. A common error is reliance on an approximation
for a real number, such as π.

Resources The code for our project is available in this repository [6]. A user can also test an
interactive version of our old system (using the TNN) via the web interface [7]. The first 78,118
sequences and their associated programs which were discovered during the previous experiment
can be inspected in this repository [4].

Ongoing Experiments: Memory The pairing functions implemented by the NMT are
not very efficient and also makes the final program less readable. Thus, we are currently
running an experiment where the variables x, y are replaced by variables xl, yl representing list
of arbitrary integers. And we add push and pop operations to store and retrieve integers. This
removes the need for pairing functions and we have already observed that the new programs
using the pop/push operations are much shorter and more readable than the ones relying on
pairing functions. In collaboration with the LODA developers [8], we also currently running
experiments with the LODA programming language which is very similar to ours but also has
array assignment and lookup as primitives.

Ongoing Experiments: Definitions The process of refactoring and making definitions is
an important part of the job of a programmer. We are experimenting with the introduction
of local and global definitions [1] to our programming language in the hope that crystallizing
commonly occurring patterns in definitions will reduce the size of our programs and facilitate
the use of these definitions by the neural network. We already observed that the presence of
too many definitions (more than 1000) is detrimental to learning and therefore we should focus
on creating a few (less than 100) high-quality definitions instead.

Ongoing Experiments: Mathematical Problems We are currently experimenting with
the application of the aforementioned self-learning approach to generate Ramsey graphs and
Hadamard Matrices. Given a program implementing a function f : Z × Z 7→ Z, we can con-
struct a candidate matrix A = (aij) for a Hadamard matrix as follows: aij = if f(i, j) ≤
0 then 1 else − 1. Furthermore, we can construct a candidate matrix B = (Bij) for the
adjacency matrix of a Ramsey graph as follows: bij = if f(i, j) ≤ 0 then 1 else 0. During
self-learning, objective functions and normalization functions are used to select the 10000 best
(with respect to the objective) and unique (with respect to normalization) training examples
for the next generation. Early results indicate that solely guessing/conjecturing may not be
enough to obtain new results on these open problems. Relying on a combination of statistical
conjecture-making steps and deductive-style reasoning steps could be more successful.
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