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Introduction One of the most challenging tasks in the area of AI/TP systems is equip-
ping fast state-of-the-art automated theorem provers (ATPs) with efficient internal guidance
of their calculi based on learning from many previous proof-search decisions. While related
AI/TP tasks such as learning-based premise selection [1], tactical guidance [4], and neural con-
jecturing [17] can use relatively slow and expensive ML methods that are called only rarely on a
single problem, internal guidance requires efficient ML methods and their nontrivial integration
with the fast ATPs. Several advances in internal guidance were recently made for connection-
based [9, 14, 18] and resolution/superposition-based ATPs [7, 15, 6]. In this work, we develop
a strong internal ML guidance for iProver [10] that is based on an instantiation calculus.

iProver iProver [10] is an ATP for quantified first-order logic. At the core of iProver is an in-
stantiation calculus, Inst-Gen [3, 11], which can be combined with resolution and superposition
calculi [2]. The Inst-Gen calculus is based on propositional reasoning to deal with propositional
abstractions of first-order clauses and model-guided incremental instantiations using unification
to generate new first-order instances. Although this approach often works well in practice, one
of the major bottlenecks is the number of generated first-order instances, and only a few of
them are usually needed in the final proof. Hence we investigate here how machine learning
can be used to select clauses most likely to be used in a proof.

We have developed an interactive mode for iProver, described in detail in our repository.1

In this mode, iProver communicates with an external agent (EA) via TCP/IP sockets. The
external agent can provide proof search guidance by either assigning scores to clauses that are
used for prioritising them for the next inferences or explicitly selecting the given clause.

GNN Guidance We have developed2 an external agent that uses a graph neural network
(GNN) to score clauses generated in the Inst-Gen calculus. In particular, we use a PyTorch [13]
implementation of the name-independent GNN architecture developed originally for connection
provers [12], but also used in the recent E/ENIGMA systems [5]. The main function is similar
to E/ENIGMA, where a Python GPU server [6] is used to reduce the overhead of repeated
model loading. However, in E/ENIGMA, the server is stateless. Here, we instead build a richer
stateful server that keeps track of the given clauses and conjectures, and is capable of generating
the context used to score the requests.

Experimental Setting The evaluation is performed on a large benchmark of 57 880 prob-
lems3 originating from the Mizar Mathematical Library (MML) [8] and exported to first-order

∗The full paper was recently accepted to LPAR 2023.
1https://gitlab.com/korovin/iprover/-/blob/master/README-interactive.md
2https://gitlab.ciirc.cvut.cz/chvalkar/iprover-gnn-server
3http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
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logic by MPTP [16]. The Mizar problems are split4 (in a 90-5-5% ratio) into training, devel-
opment, and holdout sets. Since we are interested in internal ATP guidance, we use problems
with premises limited to those used in the human-written Mizar proofs (bushy problems).

The training data are collected from previous successful runs. In the previous ENIGMA
systems, each proof (classical data) gives a training example where given clauses are considered
useful or useless depending on whether they ended up in the proof. However, the size of such
a training example corresponds to the final size of the set of all given clauses, not to the sizes
of actual score requests performed during a proof search. To address this problem, we newly
experiment with the actual score requests (dynamic data) from the successful proof searches,
where all clauses not used in the proof (including passive clauses) are considered useless.

We run iProver in its instantiation mode, but a combination with superposition and reso-
lution is also possible. Score requests are made in batches to improve performance.

In the setting where the scores provided by the EA are used for clause selection, we use
two modes: solo and coop. In the solo mode, there is just one priority queue ordered by
the scores provided by the EA. In the coop mode, we combine EA-provided scores with the
human-programmed priority queues in an equal ratio.

Results We run iProver with the human-programmed priority queues for clause selection
to collect the initial training examples. In this mode, without being slowed down by the
server (non-interactive mode), iProver solves 502 theorems out of the 2896 theorems in the
development set in 15 seconds. However, to extract the initial training data, we need to run
iProver in the interactive mode (ignoring meaningless scores); it solves 482 (no GNN called)
and 451 theorems (with a randomly initialized GNN) in the development set, respectively.
Therefore, there is some overhead from the communication and GNN calculations, but its
impact is manageable.

We train three models, one with classic data and two with dynamic data (taking randomly
4 or 10 queries from the successful runs, respectively). Each model is run in either solo or
coop mode. We used two best-performing models to obtain further training data for the next
iteration and repeated this process twice. Interestingly, dynamic data performed significantly
better than static data, and the solo mode dominated the coop mode in later iterations.

iProver, using guidance from our best-performing model, solves 1094 problems in the de-
velopment set and 1093 in the holdout set in 15 seconds. Hence solving more than twice as
many problems as iProver in the non-interactive mode using the same time limit. Moreover, it
solves a very similar fraction of problems on the training set. Similar results also hold for other
models. The training procedure seems to be quite robust to overfitting on the training data
and to generalize well. This could be due to several aspects: (i) different runs lead to different
sets of given clauses, (ii) only a limited number of the dynamic samples is seen during the
training per problem (4 or 10), and (iii) the contexts are randomly sampled from the available
given clauses. Interestingly, when we evaluate just the accuracy of the trained GNN model,
its performance on the train, development, and holdout sets slightly differs. This difference is
probably not large enough to cause significant differences in the ultimate ATP performance.

As an additional measure of generalization, we also evaluated the trained system on the
13 370 theorems in 242 articles that were added in a newer version of MML (1382) and thus
never seen during training. More than half of these problems contain new terminology. Whereas
iProver in the non-interactive mode solves 1662 theorems, iProver guided by our best model
solves 3657 theorems. Hence the improvement is similar to the results on the dataset that we
used for our training.

4http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split

2

http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split


Guiding an Instantiation Prover with GNNs Chvalovský, Korovin, Piepenbrock, and Urban
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