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Abstract

In automated reasoning, nothing captures our excitement more than the prospect that
machines would surpass humans in various intelligence tests and general reasoning tasks.
For the well-known visual-based IQ test known as Raven’s progressive matrices (RPMs),
machines have just very recently surpassed human-level performance. This feat is based
on “algebraic machine reasoning”, a completely new approach to inductive reasoning, first
introduced by the team led by Chong (the speaker of this talk). The crux is that algebraic
machine reasoning (algMR) reduces the difficult process of novel problem-solving to routine
algebraic computations. Crucially, in contrast to reasoning methods such as inductive logic
programming, algMR is intrinsically not search-based. Using algMR, the task of solving
RPMs is reduced to solving computational problems in algebra involving the ideals of
polynomial rings. Specifically, the discovery of abstract patterns in RPMs can be realized
very concretely as algebraic computations known as primary decompositions of ideals. In
this talk, we shall introduce algMR, explain its underlying intuition and how it is used
to solve the RPM task, as well as discuss the possibilities for using algMR to solve other
reasoning tasks. Through this talk, we hope to initiate a discussion on how algMR could
be useful for ATP, and more generally, on how algMR fits into the larger context of AGI.

Algebraic machine reasoning (algMR) is a fundamentally new approach to abstract reasoning.
It was first introduced in [19] in the context of solving Raven’s progressive matrices (RPMs),
which are well-known inductive reasoning tests for measuring what cognitive scientists call fluid
intelligence [1, 12]; see Fig. 1 for a typical example of an RPM. On the I-RAVEN dataset [6]
(with 14,000 RPMs in the test set), algMR achieves an accuracy of 93.2% directly from raw
image data of the RPMs, which significantly outperforms the previous state-of-the-art (SOTA)
accuracy of 77.0%, and surpasses human-level performance at 84.4%. Previous SOTA methods
on this dataset all rely on deep learning for reasoning and hence require a lot of training
on answers to RPMs. In stark contrast, algMR does not require any training on such task-
specific data, analogous to how a gifted child would be able to solve RPMs without needing
any practice on RPMs. Perhaps most interestingly, algMR is also able to directly generate the
correct answers to RPMs without needing any multiple-choice answer options to choose from.

Using algebraic methods in AI is not new. Indeed, it is well-known in automated theorem
proving (ATP) that Gröbner basis computations can be used for proof-checking [14]. In statisti-
cal learning theory, methods from algebraic geometry [16] and algebraic statistics [3] are used to
study statistical models via various suitably defined algebraic varieties [4, 8, 9, 10, 15, 17, 18, 20].
In deep learning, algebraic methods are used to study the expressivity of neural nets [2, 7, 11, 24].
In contrast, algMR establishes the first ever connection between commutative algebra and ma-
chine reasoning. As we have pointed out in [19], there is “over a century’s worth of very deep
results in commutative algebra that have not been tapped”. More importantly, in contrast to
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Method Conference Accuracy
1 ResNet+DRT [21] CVPR 2019 40.4%
2 LEN [25] NeurIPS 2019 41.4%
3 Wild ResNet [13] ICML 2018 44.3%
4 CoPINet [22] NeurIPS 2019 46.1%
5 DCNet [26] ICLR 2021 47.0%
6 SRAN [6] AAAI 2021 60.8%
7 PrAE [23] CVPR 2021 77.0%
8 algMR (ours) [19] CVPR 2023 93.2%

Human [21] - 84.4%

Figure 1: An RPM (depicted on the left) is composed of a question matrix and an answer set. A question
matrix is a 3×3 grid of panels, where the first 8 panels are filled with geometric entities, and the 9-th panel is
“missing”. These 9 panels obey certain relations, and the goal is to infer the correct answer for this last panel
from an answer set consisting of 8 possible answers. In the depicted RPM, the correct answer is indicated in
red. RPMs can be solved via algMR in a fully automated manner, directly from raw images, at an accuracy
of 93.2%, which surpasses human-level performance at 84.4%. Prior to algMR, the SOTA accuracy was 77.0%.
The table on the right gives a comparison of algMR with previous methods, evaluated on the I-RAVEN dataset.

previous applications of algebraic methods in AI, we are not solving a system of polynomial
equations. In particular, there is no notion of satisfiability. We do not assign numerical values
(or truth values) to variables/literals. Instead, ideals are treated as “actual objects of study”,
whereby reasoning is realized as non-numerical computational problems involving ideals.

The starting point of algMR is to define concepts algebraically. Let R = R[x1, . . . , xn] be
the ring of polynomials in variables x1, . . . , xn, with real coefficients. A subset I ⊆ R is called
an ideal if there are polynomials g1, . . . , gk in R such that I = {f1g1+ · · ·+fkgk|f1, . . . , fk ∈ R}
contains all polynomial combinations of g1, . . . , gk. We say that G = {g1, . . . , gk} is a generating
set for I. If I has a generating set consisting only of monomials, then we say that I is amonomial
ideal. (A monomial is a polynomial with a single term.) In algMR, a concept is defined to be
a monomial ideal of R. Thus, we can apply ideal-theoretic operations on concepts, from basic
operations such as sums, products, and intersections, to “advanced” operations such as primary
decompositions. All these operations can be computed via well-studied algebraic subroutines,
which are already implemented in most existing computer algebra systems (e.g. Macaulay2 [5]).

Primary decompositions of ideals are of fundamental importance in commutative algebra;
they are a vast generalization of the idea of prime factorization for integers. Informally, every
ideal J ⊆ R has a decomposition J = J1 ∩ · · · ∩ Jk as an intersection of finitely many primary
ideals. This intersection is called a primary decomposition of J , and each Jj is called a primary
component of the decomposition. We proved in [19, Thm. 3.1] that if J ̸= R is a concept, then J
has a unique minimal primary decomposition J = J1 ∩ · · · ∩ Jk such that J1, . . . , Jk are concepts
satisfying a nice structural property. In essence, computing the primary decompositions of
concepts serves as a rather general and effective algebraic subroutine for extracting abstract
patterns from multiple concepts. A significant portion of the talk will focus on the algebraic
intuition on how we use primary decompositions to solve RPMs, and more generally, how we
use primary decompositions to solve inductive reasoning tasks.

Although we initialize R as a polynomial ring, there is nothing inherently special about
this initialization. We could instead initialize R as a quotient ring. Concepts would still be
defined as monomial ideals of this quotient ring R, and we could still compute the primary
decompositions of concepts in R. In the last part of our talk, we shall explain what quotient
rings are, and how they relate to reasoning on concepts. We shall also discuss how further
extensions and variations of algMR (where R is initialized as a quotient ring) could be used to
solve other kinds of reasoning tasks.
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