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Abstract

Premise selection is crucial for large theory reasoning as the sheer size of the problems quickly
leads to resource starvation. In this work we propose a premise selection approach inspired by the
domain of image captioning, where language models automatically generate a suitable caption for a
given image. Likewise, we attempt to generate the sequence of axioms required to construct the proof
of a given problem. This is achieved by combining a pre-trained graph neural network with a language
model. We evaluate different configurations of our method and experience a 17.7% improvement gain
over the baseline.1

Introduction. State-of-the-art first-order theorem provers (ATPs) such as iProver [4, 10], Vam-
pire [11], E [20] and SPASS [24] attempt to solve problems consisting of a conjecture and a set of
axioms through saturation. In many applications, such as formalisation of mathematics or verification,
theorem provers have to deal with large collections of axioms where only few of them are needed for
the proof of the conjecture. It is often the case that if ATP is supplied only with relevant axioms the
problem can be quickly solved and if all axioms are submitted the proof search is flooded with irrele-
vant conclusions and the proof is never found. Thus selecting relevant axioms, aka the premise selection
problem, is crucial in solving problems with large theories. There are many works that studied premise
selection problem at different angles: based on syntactic relevance [6, 14] and on different machine
learning methods [1, 2, 8, 12, 17, 18, 19, 23].

In this work we explore the adaptation of image captioning language models to the premise selection
task. Image captioning models aim to produce a sentence in natural language that describes a given
image [26]. The captions are generated by embedding images using a pre-trained image model and
combining the embedding with a language model. These models had shown to be very powerful and we
believe that this success can be transferred to the premise selection problem.

Our approach can be split into two major tasks: first is problem embedding and second is language-
based model for premise selection based on this embedding.

Problem embeddings using GNN. First-order problems consist of a set of tree-structured formulas
which are not easily represented through a feature vector, as required for machine learning. Recent
approaches for formula embeddings are based on graph neural networks (GNNs) [15, 16, 19]. We adapt
approach from [19]. In this approach, a formula is represented as a directed acyclic graph. The vertices
correspond to the types of elements occurring in the formula, such as (anonymised) function applica-
tions. The edges denote a relationship between the vertices, e.g., an argument supplied to a function.
This representation extends to sets of formulas by computing a global graph over the node elements in
the formulae. The graph representation captures many aspects of the formulae while invariant to symbol
renaming and encoding problems with previously unseen symbols. This paper uses a graph encoding of
17 node types as described in [19].

A graph neural network is an optimisable transformation that operates on the attributes of a graph. It
utilises a “graph-in, graph-out” methodology where it embeds the graph while preserving the structure
and connectivity of the original graph. A randomly initialised vector represents each node type across
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all graphs in an n-dimensional embedding space. Next, each node in a graph is assigned to its corre-
sponding embedding vector, resulting in the node feature matrix. The GNN embeds the type features
of each node into the node feature embedding through a node update function. This effectively trans-
forms the graph features into a more favourable embedding which is done through message passing over
neighbouring nodes [5]. Message passing is accomplished through graph convolutional layers, and we
utilise the operations described in [9]. Finally, the problem graph is embedded into a feature vector
using a pooling operation such averaging over all node embeddings.

One of the challenging tasks is the GNN training. In this work we investigate pre-trained graph
neural networks (GNNs) to embed problems via transfer learning. We investigate two approaches: 1)
supervised GNN pre-training using the binary classification premise selection task; and 2) unsupervised
training based on graph similarities.

For the supervised task we add an extra prediction layer to the GNN, after the pooled embedding,
which outputs binary prediction of the axiom relevance in the problem. This combined network is
trained on the DeepMath dataset.

Although, supervised approach performs well, it requires labelled data which could be expensive to
obtain and might be not feasible for large data-sets. Hence, we also investigated unsupervised approach
which does not require external labelling. The unsupervised training approach consists of training a
matching model which learns the distance between two problem graphs according to some metric. We
adapt approach from [21]. The model takes two graphs, as input and passes them through the siamese
GNN model, to predict the graph similarity. As a similarity measure we use Laplacian spectrum dis-
tance [25]. The Laplacian spectrum distance is a computationally cheap metric, even for graphs of the
magnitude required to represent first-order problems.

Axiom Captioning After we considered problem embeddings using GNNs, we construct an axiom
captioning model which takes this embedding as an input and predicts sequences of relevant axioms.
This approach is inspired by image capturing models [26]. In the context of premise selection, the im-
ages are replaced by problems and the captions are replaced with the axioms that appear in the proof
of the problems. We describe the task of premise selection in the context of sequence learning as max-
imising the probability of producing the sequence of axioms used in the proof of a given problem. We
estimate conditional probabilities of the next relevant axiom with the recurrent neural network (RNN).
The generative axiom prediction model is constructed using the par-inject architecture [22]. This archi-
tecture takes a token embedding s and a problem embedding I at each time step. The model is given
the special start token sstart to initialise the axiom generation process. Likewise, a special end token,
send, represents the end of a sequence. Consequently, start and end tokens are added to each axiom
sequence such that the model is trained on the target sequence ⟨sstart, s1, . . . , sm, send⟩. Axioms with
few occurrences in the dataset are replaced by the Out-Of-Vocabulary token sunkown. These three
special tokens are included in the dictionary Ω. We experimented with different attention based RNN
architectures which emphasise different components of the embedding vector in the time-dependent
manner [3, 13, 26].

Results We conducted a range of experiments on DeepMath problems [2] to evaluate effects of dif-
ferent graph embeddings, attention mechanisms, input axiom orders, decoder sampling methods, and
combination of syntactic premise selection SinE [6] with our axiom captioning method. Details of these
experiments can be found in [7]. Here we show only online evaluation, Figure 1, which is evaluation of
the effect of different premise selection methods on an ATP performance (iProver) in a realistic setting,
where DeepMath problems (which are balanced for ML training) are extending corresponding axioms
from the Mizar40 benchmarks. We can see that our axiom captioning method outperforms other ML-
based premise selection methods that we tried, stand-alone ML-based premise selectors are still behind
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Figure 1: Online evaluation of SInE, Captioning, their combination, and related methods.

SinE, and most interestingly combination of SinE and axiom capturing combines best of both worlds
resulting in 17.7% improvement gain over the baseline.

References
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L. Kovács, editors, LPAR 2020, volume 73 of EPiC Series in Computing, pages 409–422. EasyChair, 2020.

[18] K. Prorokovic, M. Wand, and J. Schmidhuber. Improving stateful premise selection with transformers. In
F. Kamareddine and C. Sacerdoti Coen, editors, Intelligent Computer Mathematics, volume 12833 of LNCS,
pages 84–89. Springer, 2021.

[19] M. Rawson and G. Reger. Directed graph networks for logical reasoning. In P. Fontaine, K. Korovin, I. S.
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