Markup Language for Mathematical Reasoning with LLMs

Ryutaro Yamauchi®, Sho Sonoda*?, Akiyoshi Sannai®**, and Wataru Kumagai*?

1 ALBERT Inc., Shinjuku, Tokyo, Japan
ryutaro_yamauchi@albert2005.co. jp
2 Center for Advanced Intelligence Project, RIKEN, Chuo, Tokyo, Japan
sho.sonoda@riken. jp
3 Kyoto University, Department of Physics, Graduate School of Science, Kyoto, Japan
sannai.akiyoshi.7z@kyoto-u.ac. jp
4 The University of Tokyo, Hongo, Tokyo, Japan
kumagai@weblab.t.u-tokyo.ac. jp

Introduction — Large language models (LLMs) can solve diverse tasks without additional
training, despite being trained on a simple task of predicting the next token, when conditioned
on an appropriate prompt [1]. LLMs have shown remarkable performance in various natural lan-
guage processing (NLP) tasks, including arithmetic inference. And it is reported that effective
prompts can improve LLMs’ performance. For example, we can improve LLMs’ arithmetic rea-
soning ability by having them output intermediate steps to solve a problem rather than having
them output the final step directly. This technique is called Chain-of-Thought (CoT) [8, 4].

One challenge in mathematical reasoning with LLMs is how to handle errors in calculations
or reasoning that may occur in LLMs’ output [3]. Many previous studies have taken the
approach of reducing the occurrence of errors themselves by increasing the model size [7], tuning
the dataset [5], or integrating with external tools [2, 9]. However, since LLMs are probabilistic
language generative models, we cannot completely eliminate LLMs’ errors. And since LLMs can
make mistakes, the integration of LLMs and external tools does not always work. Therefore, to
further enhance LLMs’ mathematical reasoning abilities, a different approach is needed, which
is to make LLMs recognize and correct errors that occur in their reasoning.

In this study, we attempt to correct errors that occurred within the CoT when using LLMs to
solve mathematical problems by integrating with an external tool (Python REPL). Specifically,
we have LLMs output both CoT and Python codes and feed back the results of Python code
execution to LLMs. Our study differs from previous studies [2] in that we do not have LLMs
directly generate Python codes to solve the problem but rather use Python codes as part of
CoT. However, we found that simply feeding back Python execution results did not lead LLMs
to behave as we expected: when we let them write codes in CoT, LLMs did not wait for the
execution results but also output the fake execution results. Also, when LLMs make mistakes
in CoT, they tend to think that the code is incorrect, even if they write the correct Python
code and get the results of that execution. To avoid these problems, we defined an XML-like
markup language, gave its grammar to LLMs, and used it to interact with LLMs. The markup
language includes THINK tag for CoT, PYTHON tag for Python code description, and OUTPUT

system Messages : {mg, m{, mj, ... mi;} + {my} assistant
B Parses the markup language : m§ : DEFINE, PBHOBLEM B ChatGPT (GPT-3.5)
W Removes undesired elements * my : Corrected 7y B Thinks via CoT
from assistant’s output * mj : OUTPUT of my W Writes Python codes

B Python REPL

. s
B Message history storage Message : M.

- @Z,, : THINK, PYTHON, ANSWER

Figure 1: An overview of the mathematical reasoning process. system and assistant continue
to interact until an answer is obtained. All messages are structured in the markup language.

Markup Language for Mathematical Reasoning with LLMs Yamauchi et al.

tag for Python code execution results, etc. By using these tags, the output text of LLMs is
structured. As a result, we can remove fake Python execution result that LLMs output, and
we can make LLMs correct the errors in CoT based on the Python code execution results. Our
method achieved a success rate of 65.6% in the MATH dataset [3].

Interact with ChatGPT using markup language - In this study, we used OpenAlI Chat-
GPT (GPT-3.5-Turbo) [6] via API, which is an LLM that takes a sequence of messages and
predicts the next message. The API specification allows us to set three roles as the speaker of
a message: assistant, user, and system, where assistant is an Al, user is a human and system
is a conversation context manager. As shown below, we designed the mathematical reasoning
process as an interaction between system and assistant. First, as system, we present the prob-
lem to be solved and define the grammar of the markup language and rules of reasoning (ms).
Then, when assistant returns an output (), system analyzes it, and if it contains Python
code, system returns the execution result (mj). If assistant outputs any undesired elements,
such as fake Python execution results, system removes them from the assistant’s output (mg).
We made system and assistant repeat this process until assistant outputs the answer (Fig. 1).
The markup language we have - 1\c —npulen =nsysten"s
defined is based on XML syntax the system interprets the ‘t;EHt received from the assistant
and is a set of elements consisting The system returns the execution results to the assistant u
of content enclosed in a start tag </DEFINE=
<TAG> and end tag </TAG>. Since

: . <DEFINE ="tag ="DEFINE">This tag defines a rule or
the dataset used to train LLMs is g 115 tag devanes a rute o1
. . . <DEFINE ="tag ="THINK">Thinking dene step by step.

assumed to include text written in N e . _)
<DEFINE tag >Executable pythen code. Th

XML and HTML, LLMs can write . cprye
the markup language that is simi- <pcr1ne
lar to them. The markup language
includes the tags DEFINE, PROBLEM,
ANSWER, THINK, PYTHON, and OUTPUT. DEFINE tag is for defining tags and rules. The grammar of
the language and the tags are defined by DEFINE tag. PROBLEM and ANSWER tags are for describ-
ing the problem and answer, and the solving process ends when assistant outputs ANSWER tag.
THINK tag is for describing thoughts. By defining THINK tag as ”a tag for describing thinking
step-by-step”, we induce Zero-shot-CoT [4]. PYTHON tag is for describing Python code. When
assistant uses PYTHON tag, system returns the execution result using OUTPUT tag. By using these
tags, all messages, including the initial system prompt, are written in the markup language,
thus strongly conditioning assistant to output in the markup language.

We instructed LLMs to trust the contents of OUTPUT tags rather than the contents of THINK
tags. This enables LLMs to ignore errors in CoT by referring to the results of Python code
execution. Without this instruction, LLMs would either assume that the Python code was
incorrect and fall into a loop of repeated debugging or ignore the contents of the OUTPUT tag.

Experiments and Results - We evaluated our method on the MATH dataset [3], which
contains 12,500 challenging competitive math problems. We sampled 90 problems from the
dataset and solved them using our method. We generated five answers for each question and
evaluated them using two criteria: 1. whether our method answered the problem correctly at
least once, and 2. whether our method answered the problem correctly by a majority vote. As
a result, 75 problems (83.3%) were answered correctly by the proposed method at least once,
and 59 problems (65.6%) were answered correctly by the majority vote. These scores are higher
than the score of Minerva 540B (50.3 %) [5], which was fine-tuned with technical content.

At the conference, we will report on the effects of OUTPUT tag priority instruction in addition
to the details of the above experiment.

*Problem te be solwved.</DE

"ANSWER">The answer to the preblem.

Figure 2: The proposed markup language.

Markup Language for Mathematical Reasoning with LLMs Yamauchi et al.

References

1]

COREE=N

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jef-
frey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 1877-1901. Curran Associates, Inc., 2020.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.
Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurIPS, 2021.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
volume 35, pages 22199-22213, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 3843-3857. Curran Associates, Inc.,
2022.

OpenAl. OpenAl: Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022.

OpenAl. Gpt-4 technical report, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 24824-24837. Curran Associates, Inc., 2022.
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

https://openai.com/blog/chatgpt

	References

