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Introduction A major turning point in the history of natural language processing (NLP)
was the emergence of the first semantically meaningful word embeddings into vector space
[10, 2, 1, 6]. It turned out that the same representation can be extremely useful for several
downstream tasks, such as translation or sentiment classification [1], that the system was not
trained on explicitly. The idea behind these embeddings is really simple: a good way to
characterize the meaning of a word is through the meanings of other words that tend to appear
close to the given word in natural text. Arguably, finding the proper representation of words
and sentences is at the core of the success that surrounds present day language models.

Numerous systems that apply Deep Learning to aid mathematical reasoning and inside the
trained models they also implicly create vector embeddings for mathematical objects. There is,
however, virtually no evidence that these embeddings are faithful to the semantics of the consid-
ered mathematical theory. In fact, we conjecture that the lack of proper embeddings is a major
bottleneck of learning assisted theorem proving systems and overcoming this problem is one of
the next major challenges. Here, we propose to make the first steps in this direction.

Graph Neural Networks (GNNs) have long been considered to be particularly suitable for rep-
resenting mathematical formulas and have been used successfully in theorem provers, e.g. [7].
However, there is no analysis of the latent structure that emerges during training a GNN. Very
similar to our motivation is [8], trying to create formula embeddings via learning to predict var-
ious logic specific properties, such as well-formedness or alpha-equivalence. While it is not the
focus of the paper, they do look briefly at the latent space and identify some similar formulas
that are embedded close to each other. [9] is a continuation that trains an autoencoder and
uses the embedding to guide proof search. In contrast to these prior works, we focus more on
linguistic methods taken directly from NLP. Furthermore, at this stage we care less about per-
formance on downstream tasks and more about carefully analysing the emerging latent space.
A similiar approach is followed in [4], focusing on mathematical information retrieval.

Problem Statement Our work focuses on applying successful embedding methods from NLP
to mathematical formulas and analysing the emerging representations in terms of how well they
capture the semantics of the input. We aim to identify what mechanisms from NLP work well
directly and what needs to be adapted to the particularities of the formal content.

To get an idea of the differences between natural and formal languages, consider the natural
and formal sentences “The weather is wonderful today” and “3 ∗ (6− 2) = 24/2”. Each word in
the English sentence has a rather small set of meanings and the context determines which one
is applicable. The meaning of the sentence can be surprisingly well approximated by the set of
the relevant meanings of the words: changing the word order only results in subtle changes. [5]
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(Section 1.3) provides a back-of-the-envelope estimation of the relative information content of
various linguistic components in natural language, concluding that around 80−84% comes from
words, 12 − 16% comes from the logical/grammatical structure and emotive content accounts
for around 5 − 7%. For the arithmetic formula, however, many of the words are much more
ambiguous, for example the digit 2 can mean two, twenty, two hundred etc.1 On the other
hand, formal languages have unambiguously defined compositional semantics, i.e, we know
exactly how the meaning of a complex expression is built up from those of the subexpressions.
In summary, the bulk of the meaning in natural language comes from words, while in formal
language it comes from logical structure. It is hence an interesting – and yet open – question
whether embedding methods for natural text will also work for embedding formulas.

Current Status Terms of a mathematical theory often have a very clear structure and one
can check how well that structure manifests in the embedding space. We fix a logical theory
and generate true statements as text in that theory, which are used to train a language model.
We focus on the embedding of terms visualize their latent structure. For example, we can check
whether terms that refer to the same entity are mapped close to each other, or if terms associated
with integers align on a line. The hopeful outcome is a toolset for creating embeddings that
are faithful to the semantics of the assumed theory.

As a first step, we start with variable free arithmetic formulas of the form <exp> <rel> <exp>

where an <exp> is an expression built from decimal numbers and the {+,−, ∗, /} operators and
rel is a relation from {=,≤,≥}. An example formula looks like this:

((383 + 269)/((1 ∗ 1) ∗ (642− 641))) = ((571/(391/391)) + 81)

We train a BERT [3] language model on 100,000 such sentences. This model provides both static
(context independent) and dynamic (context dependent) embeddings. The first encouraging
result is that digits are aligned roughly on a straight line both in the static and dynamic
embedding, with the exception of 0, as shown in Figure 1. Interestingly, this only holds if
the training dataset only contains equalities: when ordering relations are also included, the
embeddings form no recognisable pattern. As we start composing digits, however, edit distance
becomes more important than semantic distance, i.e, number 110 is much closer to 120 than to
109, see Figure 2. Furthermore, the model has not learned the commutativity of addition, i.e.,
it does not know that 101 + 109 and 109 + 101 are the same, see Figure 3.

Figure 1: BERT static embed-
ding from 0 to 9.

Figure 2: BERT dynamic em-
bedding from 100 to 199.

Figure 3: BERT dynamic em-
bedding: adding numbers.

1Variables are the extreme example of terms whose meaning is entirely context dependent.
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