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Abstract

Instantiation of quantifiers is a challenging problem within the field of SMT solvers.
We will present ongoing work integrating graph neural networks into CVC5’s instantiation
strategies. The main idea is to predict which terms and combinations of terms will be
useful for the solver to instantiate with.

1 Introduction
In satisfiability modulo theories (SMT) solvers, the ground reasoning is handled by highly
optimized theory-specific solvers. For example, linear integer arithmetic or boolean vector
calculations can be handled by specific routines that exploit domain knowledge.

The non-ground reasoning can be handled via quantifier instantiation. In existing SMT
solvers, such as CVC5 [1], there are already several strategies implemented to choose how to
instantiate quantifiers. For example, there is enumerative instantiation, in which the solver
prefers tuples of terms that contain terms created earlier. There is also E-matching, which uses
a specific pattern matching algorithm to choose terms to instantiate with. Another possibility
is to make use of the propositional model, like in model-based quantifier instantiation.

As the space of possible instantiations is difficult to navigate, a logical step is to use machine
learning techniques to learn a heuristic that will determine which instantiations are preferred
by the solver.

2 Earlier Work
There has been earlier work on using machine learning to guide the instantiation process in
SMT solvers. For example, the SMT solvers VeriT [2, 3] and CVC5 [5] have been extended with
machine learning techniques. In the CVC5 case, a gradient boosted tree was used to predict
term rankings for each quantifier, building from CVC5’s enumerative instantiation procedure.

3 Instantiation Process
In Figure 1, we show a general overview of the enumerative instantiation procedure. The basic
idea of [5] was to reorder the term rankings based on some features of the terms, so that more
promising tuples (i.e. the ones that are judged by the machine learning predictor to contain
terms likely to be in proof instantiations), are tried earlier in the solving process.

While the previous work did show some performance improvements, the gradient boosted
tree had a very limited feature representation of each term to base its predictions on. We expect
that a machine learning predictor that can use information about the entire formula, including
previous instantiations made in a particular solving run, as well as the terms that are available,
would be able to make better prediction than the predictor with a limited representation. This
is why we are working on integrating a graph neural network to predict the term scores.
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Figure 1: Schematic of enumerative instantiation as implemented in CVC5. The earlier a term
appears in the ranking, the more likely it is to end up in a tuple of terms that is actually used
in an instantiation step.

4 GNNs
Graph neural networks (GNNs) are a type of neural network that can process any structure
that can be described in terms of nodes and an adjacency matrix that details how the nodes
are connected. This type of machine learning model has become been used in several works to
represent mathematical data [4].

Specifically, we plan to use a simple convolutional neural network to learn representations
of variable nodes and term nodes. The representations of these nodes can then be used to
compute scalar products of pairs of variable and term vectors to determine which terms should
be ranked higher. The higher this product score between a variable and a term vector, the
higher in the ranking we put the term.

5 Plans
Currently, the integration of a graph neural network into CVC5 is mostly resolved. We plan to
do the following experiments:

1. Train the predictor on proofs extracted from CVC5 runs on the SMTLib benchmarks that
contain quantifers.

2. Evaluate the performance within CVC5 and determine how destructive the slowdown
from the calls to the predictor is in terms of solver performance.
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