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Introduction Metamath [20] is a formal system developed by Norman Megill in 1990. Its
largest database, set.mm1, has 40338 theorems in ZFC set theory, including a diverse range
of topics including analysis, topology, graph theory, number theory, Hilbert spaces, and it
continues to grow steadily due to its small but active community. In the space of theorem
prover languages, it is one of the simplest, by design. Metamath is one of the last formal
proof systems with a large mathematical library that have not yet been translated to today’s
automated theorem provers (ATPs) [23]. Such translations between ITPs and ATPs are one
of the main parts of hammer systems [4], which have become popular in the recent years,
especially in the Isabelle community [21, 22, 3, 18, 8]. Hammer systems today exist also for
the Coq [7, 9], HOL [10, 15], and Mizar [27, 16, 14] proof assistants. The goal of this work is
to provide the first such ATP translation for Metamath, and to do the first evaluation of the
potential of state-of-the-art ATP systems on the translated Metamath library. This also results
in a new large mathematical benchmark for ATP systems. We also build other components of
the first full Metamath hammer here, such as proof reconstruction and premise selection [1].

Translations The name “Metamath” comes from “metavariable mathematics,” because the
core concept is the pervasive use of metavariables over an object logic. This ability for a
Metamath theorem to encode multiple α-equivalence classes of FOL theorems is known in the
Metamath community as “bundling,” and it poses a problem for translation to plain FOL
or HOL. We use a translation of Metamath to HOL via Metamath Zero (MM0) [5]. The
MM0 toolchain2 implements a translation from Metamath to MM0 that addresses exactly the
bundling issue. MM0 requires that all theorems are fully unbundled, i.e., split into separate
theorems for each of the α-equivalence classes. The HOL translation is then used as an input
to several versions of translation to the higher-order TPTP (TH0) format [11]. The three
versions (denoted as v1, v2 and v3 ) differ by providing more targeted translations of common
constructors in v2 and v3. In v2, 10 constructors (such as true, false, implication, conjunction,
equivalence, negation, etc.) are translated using their intended HOL meaning, and in v3 we
handle 11 more constructors. For example, wi ϕ ψ (where wi is Metamath’s implication)
translates in v2 (and v3) as ϕ′ → ψ′ (where ϕ′ is the v2 translation of ϕ and ψ′ is the v2
translation of ψ). Here is how the conjecture of rp simp2,3 looks in the three translations:
• v1: ∀ (ϕ ψ ξ : o). wi (w3a ϕ ψ ξ) ψ
• v2: ∀ (ϕ ψ ξ : o). w3a ϕ ψ ξ → ψ
• v3: ∀ (ϕ ψ ξ : o). ϕ ∧ ψ ∧ ξ → ψ

We also translated Metamath into first-order theorem proving problems by interpreting propo-
sitions and terms as classes. This allows us to use the first-order Prover9 [19] system to obtain
IVY proof objects which we then use to reconstruct the proofs in Metamath. Each of the v1,
v2, v3 and FOL translations produce a benchmark of 40556 TPTP problems, each in the bushy
(premise-minimized) and chainy (hammering) setting.

∗The full paper was recently accepted to ITP 2023.
1https://github.com/metamath/set.mm
2https://github.com/digama0/mm0
3https://us.metamath.org/mpeuni/rp-simp2.html
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Evaluation For the TH0 evaluation we use three top higher-order ATPs: (i) E prover version
2.6 [25, 24], run both in its default portfolio (auto-schedule) mode and with several strategies
developed previously by strategy invention systems [26, 13] targeting ITP libraries [16, 12].
(ii) Vampire version 5980 [17, 2], using mainly default (casc2020) higher-order portfolio. We
have also briefly tested some Vampire strategies in a standalone mode, (iii) Zipperposition
version CASC20 [6, 28], using its default CASC’20 portfolio. We have also tried several other
Zipperposition settings. For most of the experiments we have used a time limit of 60s, later
trying also lower (10s) and higher (up to 1200s) times in several cases. Of the 40556 TH0 bushy
problems, the ATPs can in total solve 27436, i.e., 67.65%. The highest performance is achieved
by Zipperposition which in 280s solves 62.68% (25420) of the v3 problems, and 61.53% (24959)
of the v2 problems. Vampire solves 58.01% (23555) of the v3 problems in 280s and 45.57%
(18482) of the v2 problems in 60s, which increases to 52.08% (21123) of the v3 problems in 60s,
and to 56.65% (22976) v3 problems in 120s. E prover outperforms Vampire on v2 in 60s (21001
solved by E vs 18482 by Vampire), and even more so in 10s (20352 vs 17160). Table 1 shows the
top-4 greedy cover using high time limits on unsolved problems only. We also evaluate the first

System mode version time (s) added sum

Z portfolio v3 280 25420 25420
V portfolio v3 600 960 26380
V portfolio v3 1200 415 26795
E portfolio v3 600 279 27074

Table 1: The top 4 TH0 methods in the greedy sequence. Note that we use different (and also
high) time limits and that the high-time runs are only done on previously unsolved problems.

order translation, by running Vampire, E and Prover9 on these problems. Vampire proves 15938
of them, while E and Prover9 solve 15136 and 14693 respectively. The Vampire performance
can be compared to its 60s performance on the v2 higher-order problems (18482). This likely
again demonstrates the efficiency of the v2 and v3 higher-order translations, because practically
none of the standard logical connectives are mapped in a shallow way to their first-order logical
counterparts in this first-order translation. On the chainy problems, Vampire solves 8509 v3
problems in 60s using SInE, and 12043 using k-NN selection with k = 120. A combination of 7
k-NN selections solves altogether 14787 problems (in general in 7 minutes).

Reconstruction, Hammer and Examples We use the FOL encoding together with Prover9
and its detailed IVY proof objects to reconstruct the ATP proofs in Metamath. k-NN followed
by Vampire are used to select and minimize the premises for Prover9. The IVY proof steps
(such as instantiate, resolve, etc.) are interpreted as Metamath proof steps, resulting in
complete Metamath proof objects. The resulting mm-hammer tool is publicly available from
our GitHub repository4. It can replay in Metamath all 15k proofs that Prover9 found. A
number of examples of ATP proofs are available on our web page.5 This includes E’s proof
xmulneg16 which has 127 steps in Metamath and takes 18131 given clause loops in 30 seconds
to E.7 It proves for extended reals that a product with a negative is the negative of the product.
E also proves the matinv theorem in 12 seconds and 13052 given clause loops, which takes a
73-step proof in Metamath.8 This states that the inverse of a matrix is its adjunct multiplied
with the inverse of the determinant of the matrix if the determinant is a unit of the ring.

4https://github.com/digama0/mm-hammer
5http://grid01.ciirc.cvut.cz/~mptp/mm_prf/
6https://us.metamath.org/mpeuni/xmulneg1.html
7http://grid01.ciirc.cvut.cz/~mptp/mm_prf/mmset12407_xmulneg1.p
8https://us.metamath.org/mpeuni/matinv.html
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[18] Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. MaSh: Machine
learning for Sledgehammer. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie,

3

https://matryoshka-project.github.io/pubs/seventeen.pdf
http://dx.doi.org/10.1145/2676724.2693173
http://dx.doi.org/10.1145/2676724.2693173


Automated Theorem Proving for Metamath Carneiro, Brown, and Urban

editors, ITP 2013, volume 7998 of LNCS, pages 35–50. Springer, 2013.

[19] William McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.

[20] Norman D. Megill and David A. Wheeler. Metamath: A Computer Lan-
guage for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019.
http://us.metamath.org/downloads/metamath.pdf.

[21] Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses. J.
Autom. Reasoning, 40(1):35–60, 2008.

[22] Lawrence C. Paulson and Jasmin C. Blanchette. Three years of experience with Sledgehammer,
a practical link between automated and interactive theorem provers. In Geoff Sutcliffe, Stephan
Schulz, and Eugenia Ternovska, editors, Workshop on the Implementation of Logics (IWIL), vol-
ume 2 of EPiC, pages 1–11. EasyChair, 2010. Invited talk.

[23] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press, 2001.

[24] Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp, and
Andrei Voronkov, editors, LPAR, volume 8312 of LNCS, pages 735–743. Springer, 2013.

[25] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher, stronger: E 2.3. In Pascal
Fontaine, editor, Automated Deduction - CADE 27 - 27th International Conference on Automated
Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, volume 11716 of Lecture Notes in
Computer Science, pages 495–507. Springer, 2019.

[26] Josef Urban. BliStr: The Blind Strategymaker. In Georg Gottlob, Geoff Sutcliffe, and Andrei
Voronkov, editors, Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia, Oc-
tober 16-19, 2015, volume 36 of EPiC Series in Computing, pages 312–319. EasyChair, 2015.

[27] Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service for Mizar formal-
izations. J. Autom. Reasoning, 50:229–241, 2013.

[28] Petar Vukmirovic, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin, and
Sophie Tourret. Making higher-order superposition work. In CADE, volume 12699 of Lecture Notes
in Computer Science, pages 415–432. Springer, 2021.

4

http://www.cs.unm.edu/~mccune/prover9/

