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Introduction This work describes a new version (0.10.0, released 2023.04.25) of a previously
published [15] Python package — gym-saturation: a collection of OpenAl Gym [3] environ-
ments for guiding saturation-style provers with reinforcement learning (RL) algorithms. The
new version partly implements the ideas of our project proposal [16]. The main changes from
the previous release (0.2.9, on 2022.02.26) are:

e guiding two popular provers instead of a single experimental one

e pluggable first-order logic formulae embeddings support

e examples of experiments with different RL algorithms

e following the updated Gymnasium [19] API instead of the outdated OpenAl Gym

gym-saturation works with Python 3.84-. One can install it by pip install gym-saturation
or conda install -c conda-forge gym-saturation. Then, provided Vampire and/or iProver
binaries are on PATH, one can use it as any other Gymnasium environment:

import gymnasium

import gym_saturation

env = gymnasium.make("Vampire-v0") # or "iProver-v0"

# edit and uncomment the following line to set a mon-default problem

# env.set_task("a-TPTP-problem-path")

observation, info = env.reset()

print("Starting proof state:")

env.render ()

terminated, truncated = False, False

while not (terminated or truncated):
# apply policy (e.g. a random avatlable action)
action = env.action_space.sample (mask=observation["action_mask"])
print("Given clause:", observation["real_obs"] [action])
observation, reward, terminated, truncated, info = env.step(action)

print("Final proof state:")

env.render ()

env.close()

*This work has been supported by the French government, through the 3IA Céte d’Azur Investment in the
Future project managed by the National Research Agency (ANR) with the reference numbers ANR-19-P3IA-
0002.
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Related work Guiding provers with RL is a hot topic. Recent projects in this domain
include TRAIL (Trial Reasoner for Al that Learns) [1], FLoP (Fiding Longer Proofs) [20], and
lazyCoP [13]. lazyCoP guides a new prover created for that purpose, FLoP builds on fCoP [7],
an OCaml rewrite of older leanCoP [9], and TRAIL relies on a modified E [14]. Contrary to
that, gym-saturation works with unmodified stable versions of Vampire [8] and iProver [5].

Environment architecture We run Vampire in a manual clause selection mode [6]. Using
Python package pexpect, we attach to Vampire’s standard input and output, pass the action
chosen by the agent to the former and read observations from the latter. iProver recently
added support of being guided by external agents. An agent has to be a TCP server satisfying
a particular API specification. To make it work with gym-saturation, we implemented a
relay server. It accepts a long-running TCP connection from a running iProver thread, stores
its requests to a thread-safe queue, and pops a response from another such queue filled by
gym-saturation thread.

Representation subsystem To apply any deep RL algorithm, one needs a representation
of the environment state in a tensor form first. In [10], the authors proposed a particular
neural network architecture they called Recursive Tree Grammar Autoencoders (RTG-AE),
which encodes abstract syntax trees produced by a programming language parser into real
vectors. They also published the pre-trained model for Python [11]. To make use of it for our
purpose, we furnished several technical improvements to their code (our contribution is freely
available !):

o a TorchServe [12] handler for HTTP POST requests for embeddings
e request caching with the Memcached server [4]
e Docker container to start the whole subsystem easily on any operating system

To integrate the ast2vec server with gym-saturation environments, we added several
Gymnasium observation wrappers, transforming a clause in the TPTP [18] language to a Python
script.

Experiment examples We provide examples of experiments easily possible with gym-saturation
as a supplementary code to this paper 2. We don’t consider these experiments as being of any
scientific significance per se, serving merely as illustrations and basic usage examples. We coded
these experiments in the Ray framework, which includes an RLIlib — a library of popular RL
algorithms. In the experiments, we try to solve SET001-1 from the TPTP by limiting the max-
imal number of clauses in a proof state to 20. In one experiment, we organise clauses in two
priority queues (by age and weight) and use an action wrapper to map from a queue number
(0 or 1) to the clause number. It transforms our environment into a semblance of a 2-armed
bandit, and we use Thompson sampling [2] to train. This experiment reflects ideas similar
to those described in [17]. In another experiment, we use ast2vec server for getting clause
embeddings and train a Proximal Policy Optimisation (PPO) algorithm as implemented in the
Ray RLlib. Such an approach is more similar to [20].

Acknowledgements We thank Konstantin Korovin for the productive discussion and for
adding the external agents’ communication feature to iProver.

Thttps://gitlab.com/inpefess/ast2vec
2https://github.com/inpefess/ray-prover/releases/tag/v0.0.3
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