One Year With Deepire: Lessons Learned and Where to Go Next?

Martin Suda¹

Czech Technical University in Prague, Czech Republic

AITP, September 2021

◆□▶ < 畳▶ < 畳▶ < 畳▶ < 畳▶ 差 別へで 1/25</p>

Vampire

• Automatic Theorem Prover (ATP) for First-order Logic (FOL)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• state-of-the-art saturation-based prover

Vampire

• Automatic Theorem Prover (ATP) for First-order Logic (FOL)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

state-of-the-art saturation-based prover

Neural (ENIGMA-style) guidance

- targeting the clause selection decision point
- supervised learning from successful runs

Vampire

- Automatic Theorem Prover (ATP) for First-order Logic (FOL)
- state-of-the-art saturation-based prover

Neural (ENIGMA-style) guidance

- targeting the clause selection decision point
- supervised learning from successful runs
- The special bit: uses a recursive neural network (RvNN) based solely on clause derivation history

Deepire Is One Year Old!

<ロ > < 母 > < 臣 > < 臣 > < 臣 > ○ ○ 2/25

Deepire Is One Year Old!

The story so far:

- [AITP20] introduced the first prototype
- [CADE21] improved Vampire's theory reasoning on SMTLIB
- [FroCoS21] surprisingly surpased ENIGMA on MIZAR40

< □ > < @ > < E > < E > E のQ 2/25

The story so far:

- [AITP20] introduced the first prototype
- [CADE21] improved Vampire's theory reasoning on SMTLIB
- [FroCoS21] surprisingly surpased ENIGMA on MIZAR40

In this talk:

• overview of the main results, insights, and future outlooks

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 3/25

On the second second

4 Experiments on Mizar

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 4/25

- 3 Notes on Implementation and Training
- 4 Experiments on Mizar
- 5 Conclusion

Saturation-based Theorem Proving

<□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 5/25

Saturation-based Theorem Proving

At a typical successful end: $|Passive| \gg |Active| \gg |Proof|$

How is clause selection traditionally done?

Take simple clause evaluation criteria:

• age: prefer clauses that were generated long time ago

<□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ℃ 6/25

• weight: prefer clauses with fewer symbols

How is clause selection traditionally done?

Take simple clause evaluation criteria:

- age: prefer clauses that were generated long time ago
- weight: prefer clauses with fewer symbols

Combine them into a single scheme:

- have a priority queue ordering Passive for each criterion
- alternate between selecting from the queues using a fixed ratio

How is clause selection traditionally done?

Take simple clause evaluation criteria:

- age: prefer clauses that were generated long time ago
- weight: prefer clauses with fewer symbols

Combine them into a single scheme:

- have a priority queue ordering Passive for each criterion
- <u>alternate</u> between selecting from the queues using a fixed <u>ratio</u>

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

<□▶ < □▶ < □▶ < 亘▶ < 亘▶ Ξ のへで 7/25

➡ [Schulz00], ENIGMA [Jakubův&Urban17], ...

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

<□▶ < □▶ < □▶ < 亘▶ < 亘▶ Ξ の へ で 7/25

➡ [Schulz00], ENIGMA [Jakubův&Urban17], ...

Technicalities:

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], ...

Technicalities:

- supervised learning setup
 - ${\, \bullet \,}$ training examples \sim the selected clauses

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], ...

Technicalities:

- supervised learning setup
 - ${\, \bullet \,}$ training examples \sim the selected clauses
- clausal representations $\mathcal{R}:\mathcal{C}
 ightarrow \mathbb{R}^n$
 - hand-crafted features, neural networks, ...

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], ...

Technicalities:

- supervised learning setup
 - ${\, \bullet \,}$ training examples \sim the selected clauses
- clausal representations $\mathcal{R}:\mathcal{C}
 ightarrow \mathbb{R}^n$
 - hand-crafted features, neural networks, ...
- learning algorithm
 - training yields a model $\mathcal{M}:\mathbb{R}^n o \{0,1\}$ (a binary classifier)

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], ...

Technicalities:

- supervised learning setup
 - ${\, \bullet \,}$ training examples \sim the selected clauses
- clausal representations $\mathcal{R}:\mathcal{C}
 ightarrow \mathbb{R}^n$
 - hand-crafted features, neural networks, ...
- learning algorithm
 - $\bullet\,$ training yields a model $\mathcal{M}:\mathbb{R}^n\to\{0,1\}$ (a binary classifier)
- integrating the learned advice back to the saturation loop

Adding the Learnt Advice $\mathcal M$ as Another Queue?

▲□▶ < @▶ < ≧▶ < ≧▶ < ≧▶ < ≧
 ⑦ < ♡ < 8/25

Priority:

• sort by model's Y/N and tiebreak by age

Adding the Learnt Advice $\mathcal M$ as Another Queue?

Priority:

 $\bullet\,$ sort by model's Y/N and tiebreak by age

Logits:

• even a binary classifier internally uses a real value

Adding the Learnt Advice $\mathcal M$ as Another Queue?

Priority:

 $\bullet\,$ sort by model's Y/N and tiebreak by age

Logits:

• even a binary classifier internally uses a real value

• A:4 A:5 A:6 A:2 A:3 A:1 W:8 W:3 W:6 W:3 W:3 W:4

Combine with the original strategy

$$\mathcal{S} \oplus \mathcal{M}^{1,0}: \begin{array}{c} 1 \\ 1 \\ 2 \\ \end{array} \begin{array}{c} A:1 \\ W:4 \\ W:3 \\ W:4 \\ W:3 \\ W:4 \\ W:4 \\ W:5 \\ W:5 \\ W:4 \\ W:5 \\ W:5 \\ W:4 \\ W:5 \\ W:5 \\ W:4 \\ W:5 \\ W:5$$

What Worked the Best?

Layered Clause Selection [Tammet19,G&S20]:

What Worked the Best?

Advantages of LCS:

- ullet keep using the well-tuned ${\mathcal S}$ also for the positively classified
- allows for the lazy evaluation trick [AITP20,CADE21]
- a smooth transition from the original to the ML-boosted

Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

④ Experiments on Mizar

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Represent Clauses by Their Derivation History

"Don't look at what the clause says, only where it's coming from."

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ○ ♀ ∩ 11/25

"Don't look at what the clause says, only where it's coming from."

Focusing on the MIZAR dataset here:

- \bullet a large set of axioms ${\cal A}$ referenced by all the problems
- each problem P consists of a conjecture C_P and a $\mathcal{A}_P \subseteq \mathcal{A}$
- a small set of inference rules labeling the internal nodes

The idea of embeddings:

• represent each clause C by a real vector $v_C \in \mathbb{R}^n$

The idea of embeddings:

• represent each clause C by a real vector $v_C \in \mathbb{R}^n$

Recursively compose the following neural building blocks:

- init function $I_A \in \mathbb{R}^n$, for every axiom type A
- deriv function $D_R : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}^n$, for every inference R

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• eval function $E : \mathbb{R}^n \to \mathbb{R}$

The idea of embeddings:

• represent each clause C by a real vector $v_C \in \mathbb{R}^n$

Recursively compose the following neural building blocks:

- init function $I_A \in \mathbb{R}^n$, for every axiom type A
- deriv function $D_R : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}^n$, for every inference R
- eval function $E : \mathbb{R}^n \to \mathbb{R}$

Example (Evaluating the derivation from the previous slide)

$$\begin{aligned} v_{C_2} &:= I_{\$conjecture} \\ v_{C_3} &:= I_{t_3_subset} \\ v_{C_6} &:= D_{Resolution}(v_{C_2}, v_{C_3}) \\ v_{C_8} &:= D_{AVATAR}(v_{C_6}) \end{aligned}$$

 C_8 is classified positive iff $E(v_{C_8}) \ge 0$

The idea of embeddings:

• represent each clause C by a real vector $v_C \in \mathbb{R}^n$

Recursively compose the following neural building blocks:

- <u>init</u> function $I_A \in \mathbb{R}^n$, for every axiom type A
- deriv function $D_R : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}^n$, for every inference R
- eval function $E : \mathbb{R}^n \to \mathbb{R}$

Example (Evaluating the derivation from the previous slide)

$$\begin{aligned} v_{C_2} &:= I_{\text{sconjecture}} \\ v_{C_3} &:= I_{t_3_subset} \\ v_{C_6} &:= D_{Resolution}(v_{C_2}, v_{C_3}) \\ v_{C_8} &:= D_{AVATAR}(v_{C_6}) \end{aligned}$$

 C_8 is classified positive iff $E(v_{C_8}) \ge 0$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ • ⑦ Q ◎ 12/25

➡ NB: Constant work per clause!

◆□▶ < @▶ < ≧▶ < ≧▶ ≧ りへで 13/25</p>

1) Axioms (and the init function)

• $|\mathcal{A}_{\mathrm{MIZAR}}| pprox$ 43K, clipped to m=0.5/1/2K most frequent ones

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ◎ 13/25

- all others marked I_{\$unknown}
- the most important factor for good ATP performance

1) Axioms (and the init function)

- $|\mathcal{A}_{\mathrm{MIZAR}}| pprox$ 43K, clipped to m=0.5/1/2K most frequent ones
- all others marked I_{\$unknown}
- the most important factor for good ATP performance
- 2) Inference rules (and the deriv function)
 - some form of deriv is obviously necessary for the recursion
 - $\bullet\,$ but the ability to distinguish rules $\sim\,$ extra 5% problems solved

1) Axioms (and the init function)

- $|\mathcal{A}_{\mathrm{MIZAR}}| pprox$ 43K, clipped to $m{=}0.5/1/2$ K most frequent ones
- all others marked I_{\$unknown}
- the most important factor for good ATP performance
- 2) Inference rules (and the deriv function)
 - some form of deriv is obviously necessary for the recursion
 - $\bullet\,$ but the ability to distinguish rules $\sim\,$ extra 5% problems solved

3) Conjecture relatedness

- in each problem, we mark conjecture clauses by Isconjecture
- the network learns to incorporate the right level of goal directedness

Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

4 Experiments on Mizar

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Experience with PyTorch

Ú

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E のへで 15/25

Ú

Training in Python \longrightarrow inference from C++

- good experience with TorchScript model export
- almost any PyTorch code will get (VM-)interpreted in C++

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ċ

Training in Python \longrightarrow inference from C++

- good experience with TorchScript model export
- almost any PyTorch code will get (VM-)interpreted in C++

Dynamic computational graphs:

- elegant and flexible, but
- training needs to keep building them over and over!

Batching

- group derivations to create similarly-sized chunks for training
- merge equivalent nodes (within problem / across problems)

Batching and Parallel Training Setup

Batching

- group derivations to create similarly-sized chunks for training
- merge equivalent nodes (within problem / across problems)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \blacktriangleright However, this is not SIMD \rightarrow only trained on CPUs

Batching and Parallel Training Setup

Batching

- group derivations to create similarly-sized chunks for training
- merge equivalent nodes (within problem / across problems)
- \blacktriangleright However, this is not SIMD \rightarrow only trained on CPUs

Master-worker parallel training setup:

Batching and Parallel Training Setup

Batching

- group derivations to create similarly-sized chunks for training
- merge equivalent nodes (within problem / across problems)
- \blacktriangleright However, this is not SIMD \rightarrow only trained on CPUs

Master-worker parallel training setup:

► A funny "drift" effect that actually regularizes!

Validate and Compare to the ATP Performance

(from [CADE21]: Deepire for theory reasoning on SMTLIB)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の Q ○ 17/25

How often is \mathcal{M} 100% correct?

[CADE21]: leaning a bit positively improves ATP performance

Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

On the second second

4 Experiments on Mizar

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Experimental Setup

Mizar40 benchmark [Urban&Kaliszyk15]

- 57 880 problems in the TPTP format
- MPTP export from the Mizar Mathematical Library
- the small, bushy (i.e., re-proving), version

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Mizar40 benchmark [Urban&Kaliszyk15]

- 57 880 problems in the TPTP format
- MPTP export from the Mizar Mathematical Library
- the small, bushy (i.e., re-proving), version

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 20/25

Fixed for the whole experiment:

- a base strategy \mathcal{V} :
 - previously shown to work well on Mizar40
- 10 s time limit

- $\bullet \ \mathcal{V}$ was able to solve 20197 problems
- 800 MB of successful derivations (when zipped)
- 43 080 named Mizar axioms occurring in them

• largest derivation: 242 023 (merged) nodes

- $\mathcal V$ was able to solve 20197 problems
- 800 MB of successful derivations (when zipped)
- 43 080 named Mizar axioms occurring in them
- largest derivation: 242 023 (merged) nodes

How network size affects training:

model shorthand	$\mid \mathcal{H}^{n128}$	\mathcal{M}^{n64}	\mathcal{M}^{n128}	\mathcal{M}^{n256}	\mathcal{D}^{n128}
revealed axioms <i>m</i>	0.5K	1K	1K	1K	2K
embedding size <i>n</i>	128	64	128	256	128
training time (min/epoch)	42	32	48	74	58
model size (MB)	4.6	1.6	5.0	17.9	5.8
best validation loss		0.455	0.455	0.452	

- $\mathcal V$ was able to solve 20197 problems
- 800 MB of successful derivations (when zipped)
- 43 080 named Mizar axioms occurring in them
- largest derivation: 242 023 (merged) nodes

How network size affects training:

model shorthand	$\mid \mathcal{H}^{n128}$	\mathcal{M}^{n64}	\mathcal{M}^{n128}	\mathcal{M}^{n256}	\mathcal{D}^{n128}
revealed axioms <i>m</i>	0.5K	1K	1K	1K	2K
embedding size <i>n</i>	128	64	128	256	128
training time (min/epoch)	42	32	48	74	58
model size (MB)	4.6	1.6	5.0	17.9	5.8
best validation loss		0.455	0.455	0.452	

- $\bullet \ \mathcal{V}$ was able to solve 20197 problems
- 800 MB of successful derivations (when zipped)
- 43 080 named Mizar axioms occurring in them
- largest derivation: 242 023 (merged) nodes

How network size affects training:

model shorthand	$ \mathcal{H}^{n128}$	\mathcal{M}^{n64}	\mathcal{M}^{n128}	\mathcal{M}^{n256}	\mathcal{D}^{n128}
revealed axioms <i>m</i>	0.5K	1K	1K	1K	2K
embedding size <i>n</i>	128	64	128	256	128
training time (min/epoch)	42	32	48	74	58
model size (MB)	4.6	1.6	5.0	17.9	5.8
best validation loss		0.455	0.455	0.452	

➡ Large capacity generalizes best!

strategy	$\mid \mathcal{V} \mid$	\mathcal{H}^{n128}	\mathcal{M}^{n64}	\mathcal{M}^{n128}	\mathcal{M}^{n256}	\mathcal{D}^{n128}
solved	20 197	24 581	25 484	25 805	25 287	26014
$\mathcal{V}+$	+0	+5022	+5879	+6129	+5707	+6277
$\mathcal{V}-$	-0	-638	-592	-521	-617	-460
NN-eval.time	0%	37.1 %	32.9 %	37.7 %	48.6 %	36.7 %

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼 · 의 역 약 22/25

Num.probs solved by $\ensuremath{\mathcal{V}}$ and its RvNN boosted variants

Points to note:

• \mathcal{D}^{n128} solves almost 30 % more problems than \mathcal{V}

strategy	\mathcal{V}	$ \mathcal{H}^{n128}$	\mathcal{M}^{n64}	\mathcal{M}^{n128}	\mathcal{M}^{n256}	\mathcal{D}^{n128}
solved	20 197	24 581	25 484	25 805	25 287	26014
$\mathcal{V}+$	+0	+5022	+5879	+6129	+5707	+6277
$\mathcal{V}-$	-0	-638	-592	-521	-617	-460
NN-eval.time	0%	37.1 %	32.9 %	37.7 %	48.6 %	36.7 %

Num.probs solved by $\ensuremath{\mathcal{V}}$ and its RvNN boosted variants

Points to note:

- \mathcal{D}^{n128} solves almost 30 % more problems than \mathcal{V}
- Could be even more greedy about the revealed axioms (m)

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼 · 의 역 약 22/25

strategy	$ \mathcal{V} $	$ \mathcal{H}^{n128}$	\mathcal{M}^{n64}	\mathcal{M}^{n128}	\mathcal{M}^{n256}	\mathcal{D}^{n128}
solved	20 197	24 581	25 484	25 805	25 287	26014
$\mathcal{V}+$	+0	+5022	+5879	+6129	+5707	+6277
$\mathcal{V}-$	-0	-638	-592	-521	-617	-460
NN-eval.time	0%	37.1 %	32.9 %	37.7 %	48.6%	36.7 %

Num.probs solved by $\ensuremath{\mathcal{V}}$ and its RvNN boosted variants

Points to note:

- \mathcal{D}^{n128} solves almost 30 % more problems than $\mathcal V$
- Could be even more greedy about the revealed axioms (m)
- Going over the embedding size (n = 128) makes it too slow

strategy	$\mid \mathcal{V} \mid$	\mathcal{H}^{n128}	\mathcal{M}^{n64}	\mathcal{M}^{n128}	\mathcal{M}^{n256}	\mathcal{D}^{n128}
solved	20 197	24 581	25 484	25 805	25 287	26014
$\mathcal{V}+$	+0	+5022	+5879	+6129	+5707	+6277
$\mathcal{V}-$	-0	-638	-592	-521	-617	-460
NN-eval.time	0%	37.1 %	32.9 %	37.7 %	48.6 %	36.7 %

Num.probs solved by ${\mathcal V}$ and its RvNN boosted variants

Points to note:

- \mathcal{D}^{n128} solves almost 30 % more problems than $\mathcal V$
- Could be even more greedy about the revealed axioms (m)
- Going over the embedding size (n = 128) makes it too slow
- It's fine to spend 40% of time *just thinking what the next clause should be* if it results in a good enough advice!

Looping and a Comparison to ENIGMA

Looping [Jakubův&Urban19]

- iterate the learning and solving phases
- keep learning also from the newly discovered proofs
- ➡ There: boosted tree learner over hand-crafted features

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 23/25

Looping and a Comparison to ENIGMA

Looping [Jakubův&Urban19]

- iterate the learning and solving phases
- keep learning also from the newly discovered proofs
- ➡ There: boosted tree learner over hand-crafted features

Performance comparison

	ENIGMA [J&U19] Deepire			e	
loop	solved	$+\mathcal{S}\%$	solved	$+\mathcal{V}\%$	note
0	14933	0.0	20 197	0.0	
1	20 366	35.8	26 014	28.8	m = 2000
2	22 839	52.3	27 348	35.4	<i>m</i> = 3000
3	23 467	56.5	28 947	43.3	m = 5000
4	23753	58.4			
4'	25 397	70.0			

Points to note:

• both show the effect of diminishing returns

Looping and a Comparison to ENIGMA

Looping [Jakubův&Urban19]

- iterate the learning and solving phases
- keep learning also from the newly discovered proofs
- ➡ There: boosted tree learner over hand-crafted features

Performance comparison

	ENIGM	A [J&U19]		Deepir	e
loop	solved	$+\mathcal{S}\%$	solved	$+\mathcal{V}\%$	note
0	14933	0.0	20 197	0.0	
1	20 366	35.8	26 014	28.8	m = 2000
2	22 839	52.3	27 348	35.4	<i>m</i> = 3000
3	23 467	56.5	28 947	43.3	m = 5000
4	23753	58.4			•
4'	25 397	70.0			

Points to note:

- both show the effect of diminishing returns
- ENIGMA climbs higher (relatively) from lower numbers

Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

On the second second

④ Experiments on Mizar

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 24/25

Summary

• Deepire explores ENIGMA-style clause selection guidance deliberately focusing on just derivation history

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 25/25

- informedness / speed of evaluation balance
- convincing results on SMTLIB / MIZAR40

Summary

• Deepire explores ENIGMA-style clause selection guidance deliberately focusing on just derivation history

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 25/25

- informedness / speed of evaluation balance
- convincing results on SMTLIB / MIZAR40
- https://github.com/quickbeam123/deepire3.1

Summary

- Deepire explores ENIGMA-style clause selection guidance deliberately focusing on just derivation history
- informedness / speed of evaluation balance
- convincing results on SMTLIB / MIZAR40
- https://github.com/quickbeam123/deepire3.1

Open

 positive example selection is more tricky than it seems (AVATAR, LRS, but already in DISCOUNT)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 25/25

- classification vs regression
- What did the model actually learn? (XAI)

Summary

- Deepire explores ENIGMA-style clause selection guidance deliberately focusing on just derivation history
- informedness / speed of evaluation balance
- convincing results on SMTLIB / MIZAR40
- https://github.com/quickbeam123/deepire3.1

Open

- positive example selection is more tricky than it seems (AVATAR, LRS, but already in DISCOUNT)
- classification vs regression
- What did the model actually learn? (XAI)

Outlook

- looping is the first step towards RL
- general ATP knowledge rather than benchmark-specific!

Summary

- Deepire explores ENIGMA-style clause selection guidance deliberately focusing on just derivation history
- informedness / speed of evaluation balance
- convincing results on SMTLIB / MIZAR40
- https://github.com/quickbeam123/deepire3.1

Open

- positive example selection is more tricky than it seems (AVATAR, LRS, but already in DISCOUNT)
- classification vs regression
- What did the model actually learn? (XAI)

Outlook

- looping is the first step towards RL
- general ATP knowledge rather than benchmark-specific!

Thank you for attention!