
1/25

One Year With Deepire: Lessons Learned
and Where to Go Next?

Martin Suda1

Czech Technical University in Prague, Czech Republic

AITP, September 2021

1Supported by Czech Science Foundation project 20-06390Y.

1/25

Deepire: Powering an ATP using Neural Networks

Deepire = +

Vampire
Automatic Theorem Prover (ATP) for First-order Logic (FOL)
state-of-the-art saturation-based prover

Neural (ENIGMA-style) guidance
targeting the clause selection decision point
supervised learning from successful runs

å The special bit: uses a recursive neural network (RvNN)
based solely on clause derivation history

1/25

Deepire: Powering an ATP using Neural Networks

Deepire = +

Vampire
Automatic Theorem Prover (ATP) for First-order Logic (FOL)
state-of-the-art saturation-based prover

Neural (ENIGMA-style) guidance
targeting the clause selection decision point
supervised learning from successful runs

å The special bit: uses a recursive neural network (RvNN)
based solely on clause derivation history

1/25

Deepire: Powering an ATP using Neural Networks

Deepire = +

Vampire
Automatic Theorem Prover (ATP) for First-order Logic (FOL)
state-of-the-art saturation-based prover

Neural (ENIGMA-style) guidance
targeting the clause selection decision point
supervised learning from successful runs

å The special bit: uses a recursive neural network (RvNN)
based solely on clause derivation history

1/25

Deepire: Powering an ATP using Neural Networks

Deepire = +

Vampire
Automatic Theorem Prover (ATP) for First-order Logic (FOL)
state-of-the-art saturation-based prover

Neural (ENIGMA-style) guidance
targeting the clause selection decision point
supervised learning from successful runs

å The special bit: uses a recursive neural network (RvNN)
based solely on clause derivation history

2/25

Deepire Is One Year Old!

The story so far:
[AITP20] - introduced the first prototype
[CADE21] - improved Vampire’s theory reasoning on SMTLIB
[FroCoS21] - surprisingly surpased ENIGMA on MIZAR40

In this talk:
overview of the main results, insights, and future outlooks

2/25

Deepire Is One Year Old!

The story so far:
[AITP20] - introduced the first prototype
[CADE21] - improved Vampire’s theory reasoning on SMTLIB
[FroCoS21] - surprisingly surpased ENIGMA on MIZAR40

In this talk:
overview of the main results, insights, and future outlooks

2/25

Deepire Is One Year Old!

The story so far:
[AITP20] - introduced the first prototype
[CADE21] - improved Vampire’s theory reasoning on SMTLIB
[FroCoS21] - surprisingly surpased ENIGMA on MIZAR40

In this talk:
overview of the main results, insights, and future outlooks

3/25

Outline

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

4 Experiments on Mizar

5 Conclusion

4/25

Outline

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

4 Experiments on Mizar

5 Conclusion

5/25

Saturation-based Theorem Proving

Selection Functions Quality Selections Lookahead Selection Experiments

The Calculus

Resolution Factoring

A _ C1 ¬A0 _ C2

(C1 _ C2)✓
, A _ A0 _ C

(A _ C)✓
,

where, for both inferences, ✓ = mgu(A, A0) and A is not an equality literal

Superposition

l ' r _ C1 L[s]p _ C2

(L[r]p _ C1 _ C2)✓
or

l ' r _ C1 t[s]p ⌦ t0 _ C2

(t[r]p ⌦ t0 _ C1 _ C2)✓
,

where ✓ = mgu(l , s) and r✓ 6⌫ l✓ and, for the left rule L[s] is not an equality
literal, and for the right rule ⌦ stands either for ' or 6' and t0✓ 6⌫ t[s]✓

EqualityResolution EqualityFactoring

s 6' t _ C

C✓
,

s ' t _ s 0 ' t0 _ C

(t 6' t0 _ s 0 ' t0 _ C)✓
,

where ✓ = mgu(s, t) where ✓ = mgu(s, s 0), t✓ 6⌫ s✓, and t0✓ 6⌫ s 0✓

Ac#ve	
Preprocessing	

Pa
rs
in
g	

Passive	

Clause	
Selec*on	U

np
ro
ce
ss
ed

	

At a typical successful end: |Passive| � |Active| � |Proof |

5/25

Saturation-based Theorem Proving

Selection Functions Quality Selections Lookahead Selection Experiments

The Calculus

Resolution Factoring

A _ C1 ¬A0 _ C2

(C1 _ C2)✓
, A _ A0 _ C

(A _ C)✓
,

where, for both inferences, ✓ = mgu(A, A0) and A is not an equality literal

Superposition

l ' r _ C1 L[s]p _ C2

(L[r]p _ C1 _ C2)✓
or

l ' r _ C1 t[s]p ⌦ t0 _ C2

(t[r]p ⌦ t0 _ C1 _ C2)✓
,

where ✓ = mgu(l , s) and r✓ 6⌫ l✓ and, for the left rule L[s] is not an equality
literal, and for the right rule ⌦ stands either for ' or 6' and t0✓ 6⌫ t[s]✓

EqualityResolution EqualityFactoring

s 6' t _ C

C✓
,

s ' t _ s 0 ' t0 _ C

(t 6' t0 _ s 0 ' t0 _ C)✓
,

where ✓ = mgu(s, t) where ✓ = mgu(s, s 0), t✓ 6⌫ s✓, and t0✓ 6⌫ s 0✓

Ac#ve	
Preprocessing	

Pa
rs
in
g	

Passive	

Clause	
Selec*on	U

np
ro
ce
ss
ed

	

At a typical successful end: |Passive| � |Active| � |Proof |

6/25

How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :

6/25

How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :

6/25

How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :

7/25

Machine-learned Clause Selection Guidance

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

å [Schulz00], ENIGMA [Jakubův&Urban17], . . .

Technicalities:
supervised learning setup

training examples ∼ the selected clauses

clausal representations R : C → Rn

hand-crafted features, neural networks, . . .

learning algorithm
training yields a modelM : Rn → {0, 1} (a binary classifier)

integrating the learned advice back to the saturation loop

7/25

Machine-learned Clause Selection Guidance

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

å [Schulz00], ENIGMA [Jakubův&Urban17], . . .

Technicalities:

supervised learning setup
training examples ∼ the selected clauses

clausal representations R : C → Rn

hand-crafted features, neural networks, . . .

learning algorithm
training yields a modelM : Rn → {0, 1} (a binary classifier)

integrating the learned advice back to the saturation loop

7/25

Machine-learned Clause Selection Guidance

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

å [Schulz00], ENIGMA [Jakubův&Urban17], . . .

Technicalities:
supervised learning setup

training examples ∼ the selected clauses

clausal representations R : C → Rn

hand-crafted features, neural networks, . . .

learning algorithm
training yields a modelM : Rn → {0, 1} (a binary classifier)

integrating the learned advice back to the saturation loop

7/25

Machine-learned Clause Selection Guidance

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

å [Schulz00], ENIGMA [Jakubův&Urban17], . . .

Technicalities:
supervised learning setup

training examples ∼ the selected clauses

clausal representations R : C → Rn

hand-crafted features, neural networks, . . .

learning algorithm
training yields a modelM : Rn → {0, 1} (a binary classifier)

integrating the learned advice back to the saturation loop

7/25

Machine-learned Clause Selection Guidance

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

å [Schulz00], ENIGMA [Jakubův&Urban17], . . .

Technicalities:
supervised learning setup

training examples ∼ the selected clauses

clausal representations R : C → Rn

hand-crafted features, neural networks, . . .

learning algorithm
training yields a modelM : Rn → {0, 1} (a binary classifier)

integrating the learned advice back to the saturation loop

7/25

Machine-learned Clause Selection Guidance

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

å [Schulz00], ENIGMA [Jakubův&Urban17], . . .

Technicalities:
supervised learning setup

training examples ∼ the selected clauses

clausal representations R : C → Rn

hand-crafted features, neural networks, . . .

learning algorithm
training yields a modelM : Rn → {0, 1} (a binary classifier)

integrating the learned advice back to the saturation loop

8/25

Adding the Learnt AdviceM as Another Queue?

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :

8/25

Adding the Learnt AdviceM as Another Queue?

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :

8/25

Adding the Learnt AdviceM as Another Queue?

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :

9/25

What Worked the Best?

Layered Clause Selection [Tammet19,G&S20]:

S ⊕ S[M1] :

Advantages of LCS:
keep using the well-tuned S also for the positively classified
allows for the lazy evaluation trick [AITP20,CADE21]
a smooth transition from the original to the ML-boosted

9/25

What Worked the Best?

Layered Clause Selection [Tammet19,G&S20]:

S ⊕ S[M1] :

Advantages of LCS:
keep using the well-tuned S also for the positively classified
allows for the lazy evaluation trick [AITP20,CADE21]
a smooth transition from the original to the ML-boosted

10/25

Outline

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

4 Experiments on Mizar

5 Conclusion

11/25

Represent Clauses by Their Derivation History

“Don’t look at what the clause says, only where it’s coming from.”

Focusing on the MIZAR dataset here:
a large set of axioms A referenced by all the problems
each problem P consists of a conjecture CP and a AP ⊆ A
a small set of inference rules labeling the internal nodes

11/25

Represent Clauses by Their Derivation History

“Don’t look at what the clause says, only where it’s coming from.”

Focusing on the MIZAR dataset here:
a large set of axioms A referenced by all the problems
each problem P consists of a conjecture CP and a AP ⊆ A
a small set of inference rules labeling the internal nodes

12/25

Recursive Neural Networks over Clause Derivations

The idea of embeddings:
represent each clause C by a real vector vC ∈ Rn

Recursively compose the following neural building blocks:
init function IA ∈ Rn, for every axiom type A

deriv function DR : Rn × · · · ×Rn → Rn, for every inference R

eval function E : Rn → R

Example (Evaluating the derivation from the previous slide)

vC2 := I$conjecture
vC3 := It3_subset
vC6 := DResolution(vC2 , vC3)
vC8 := DAVATAR(vC6)

C8 is classified positive iff E (vC8) ≥ 0

å NB: Constant work per clause!

12/25

Recursive Neural Networks over Clause Derivations

The idea of embeddings:
represent each clause C by a real vector vC ∈ Rn

Recursively compose the following neural building blocks:
init function IA ∈ Rn, for every axiom type A

deriv function DR : Rn × · · · ×Rn → Rn, for every inference R

eval function E : Rn → R

Example (Evaluating the derivation from the previous slide)

vC2 := I$conjecture
vC3 := It3_subset
vC6 := DResolution(vC2 , vC3)
vC8 := DAVATAR(vC6)

C8 is classified positive iff E (vC8) ≥ 0

å NB: Constant work per clause!

12/25

Recursive Neural Networks over Clause Derivations

The idea of embeddings:
represent each clause C by a real vector vC ∈ Rn

Recursively compose the following neural building blocks:
init function IA ∈ Rn, for every axiom type A

deriv function DR : Rn × · · · ×Rn → Rn, for every inference R

eval function E : Rn → R

Example (Evaluating the derivation from the previous slide)

vC2 := I$conjecture
vC3 := It3_subset
vC6 := DResolution(vC2 , vC3)
vC8 := DAVATAR(vC6)

C8 is classified positive iff E (vC8) ≥ 0

å NB: Constant work per clause!

12/25

Recursive Neural Networks over Clause Derivations

The idea of embeddings:
represent each clause C by a real vector vC ∈ Rn

Recursively compose the following neural building blocks:
init function IA ∈ Rn, for every axiom type A

deriv function DR : Rn × · · · ×Rn → Rn, for every inference R

eval function E : Rn → R

Example (Evaluating the derivation from the previous slide)

vC2 := I$conjecture
vC3 := It3_subset
vC6 := DResolution(vC2 , vC3)
vC8 := DAVATAR(vC6)

C8 is classified positive iff E (vC8) ≥ 0

å NB: Constant work per clause!

13/25

What Information Does the Network Mostly Pick Up On?

1) Axioms (and the init function)
|AMIZAR| ≈ 43K, clipped to m=0.5/1/2K most frequent ones
all others marked I$unknown

the most important factor for good ATP performance

2) Inference rules (and the deriv function)
some form of deriv is obviously necessary for the recursion
but the ability to distinguish rules ∼ extra 5% problems solved

3) Conjecture relatedness
in each problem, we mark conjecture clauses by I$conjecture

the network learns to incorporate the right level of goal
directedness

13/25

What Information Does the Network Mostly Pick Up On?

1) Axioms (and the init function)
|AMIZAR| ≈ 43K, clipped to m=0.5/1/2K most frequent ones
all others marked I$unknown

the most important factor for good ATP performance

2) Inference rules (and the deriv function)
some form of deriv is obviously necessary for the recursion
but the ability to distinguish rules ∼ extra 5% problems solved

3) Conjecture relatedness
in each problem, we mark conjecture clauses by I$conjecture

the network learns to incorporate the right level of goal
directedness

13/25

What Information Does the Network Mostly Pick Up On?

1) Axioms (and the init function)
|AMIZAR| ≈ 43K, clipped to m=0.5/1/2K most frequent ones
all others marked I$unknown

the most important factor for good ATP performance

2) Inference rules (and the deriv function)
some form of deriv is obviously necessary for the recursion
but the ability to distinguish rules ∼ extra 5% problems solved

3) Conjecture relatedness
in each problem, we mark conjecture clauses by I$conjecture

the network learns to incorporate the right level of goal
directedness

13/25

What Information Does the Network Mostly Pick Up On?

1) Axioms (and the init function)
|AMIZAR| ≈ 43K, clipped to m=0.5/1/2K most frequent ones
all others marked I$unknown

the most important factor for good ATP performance

2) Inference rules (and the deriv function)
some form of deriv is obviously necessary for the recursion
but the ability to distinguish rules ∼ extra 5% problems solved

3) Conjecture relatedness
in each problem, we mark conjecture clauses by I$conjecture

the network learns to incorporate the right level of goal
directedness

14/25

Outline

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

4 Experiments on Mizar

5 Conclusion

15/25

Experience with PyTorch

Training in Python −→ inference from C++
good experience with TorchScript model export
almost any PyTorch code will get (VM-)interpreted in C++

Dynamic computational graphs:
elegant and flexible, but
training needs to keep building them over and over!

15/25

Experience with PyTorch

Training in Python −→ inference from C++
good experience with TorchScript model export
almost any PyTorch code will get (VM-)interpreted in C++

Dynamic computational graphs:
elegant and flexible, but
training needs to keep building them over and over!

15/25

Experience with PyTorch

Training in Python −→ inference from C++
good experience with TorchScript model export
almost any PyTorch code will get (VM-)interpreted in C++

Dynamic computational graphs:
elegant and flexible, but
training needs to keep building them over and over!

16/25

Batching and Parallel Training Setup

Batching
group derivations to create similarly-sized chunks for training
merge equivalent nodes (within problem / across problems)

å However, this is not SIMD → only trained on CPUs

Master-worker parallel training setup:

å A funny “drift” effect that actually regularizes!

16/25

Batching and Parallel Training Setup

Batching
group derivations to create similarly-sized chunks for training
merge equivalent nodes (within problem / across problems)

å However, this is not SIMD → only trained on CPUs

Master-worker parallel training setup:

å A funny “drift” effect that actually regularizes!

16/25

Batching and Parallel Training Setup

Batching
group derivations to create similarly-sized chunks for training
merge equivalent nodes (within problem / across problems)

å However, this is not SIMD → only trained on CPUs

Master-worker parallel training setup:

å A funny “drift” effect that actually regularizes!

16/25

Batching and Parallel Training Setup

Batching
group derivations to create similarly-sized chunks for training
merge equivalent nodes (within problem / across problems)

å However, this is not SIMD → only trained on CPUs

Master-worker parallel training setup:

å A funny “drift” effect that actually regularizes!

17/25

Validate and Compare to the ATP Performance

(from [CADE21]: Deepire for theory reasoning on SMTLIB)

18/25

Tweak Your Positive Bias

How often is M 100% correct?

[CADE21]: leaning a bit positively improves ATP performance

19/25

Outline

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

4 Experiments on Mizar

5 Conclusion

20/25

Experimental Setup

Mizar40 benchmark [Urban&Kaliszyk15]
57 880 problems in the TPTP format
MPTP export from the Mizar Mathematical Library
the small, bushy (i.e., re-proving), version

Fixed for the whole experiment:
a base strategy V:

previously shown to work well on Mizar40

10 s time limit

20/25

Experimental Setup

Mizar40 benchmark [Urban&Kaliszyk15]
57 880 problems in the TPTP format
MPTP export from the Mizar Mathematical Library
the small, bushy (i.e., re-proving), version

Fixed for the whole experiment:
a base strategy V:

previously shown to work well on Mizar40

10 s time limit

20/25

Experimental Setup

Mizar40 benchmark [Urban&Kaliszyk15]
57 880 problems in the TPTP format
MPTP export from the Mizar Mathematical Library
the small, bushy (i.e., re-proving), version

Fixed for the whole experiment:
a base strategy V:

previously shown to work well on Mizar40

10 s time limit

21/25

Training the First Models

Data preparation:
V was able to solve 20 197 problems
800MB of successful derivations (when zipped)
43 080 named Mizar axioms occurring in them
largest derivation: 242 023 (merged) nodes

How network size affects training:

model shorthand Hn128 Mn64 Mn128 Mn256 Dn128

revealed axioms m 0.5K 1K 1K 1K 2K
embedding size n 128 64 128 256 128
training time (min/epoch) 42 32 48 74 58
model size (MB) 4.6 1.6 5.0 17.9 5.8
best validation loss 0.455 0.455 0.452

å Large capacity generalizes best!

21/25

Training the First Models

Data preparation:
V was able to solve 20 197 problems
800MB of successful derivations (when zipped)
43 080 named Mizar axioms occurring in them
largest derivation: 242 023 (merged) nodes

How network size affects training:

model shorthand Hn128 Mn64 Mn128 Mn256 Dn128

revealed axioms m 0.5K 1K 1K 1K 2K
embedding size n 128 64 128 256 128
training time (min/epoch) 42 32 48 74 58
model size (MB) 4.6 1.6 5.0 17.9 5.8
best validation loss 0.455 0.455 0.452

å Large capacity generalizes best!

21/25

Training the First Models

Data preparation:
V was able to solve 20 197 problems
800MB of successful derivations (when zipped)
43 080 named Mizar axioms occurring in them
largest derivation: 242 023 (merged) nodes

How network size affects training:

model shorthand Hn128 Mn64 Mn128 Mn256 Dn128

revealed axioms m 0.5K 1K 1K 1K 2K
embedding size n 128 64 128 256 128
training time (min/epoch) 42 32 48 74 58
model size (MB) 4.6 1.6 5.0 17.9 5.8
best validation loss 0.455 0.455 0.452

å Large capacity generalizes best!

21/25

Training the First Models

Data preparation:
V was able to solve 20 197 problems
800MB of successful derivations (when zipped)
43 080 named Mizar axioms occurring in them
largest derivation: 242 023 (merged) nodes

How network size affects training:

model shorthand Hn128 Mn64 Mn128 Mn256 Dn128

revealed axioms m 0.5K 1K 1K 1K 2K
embedding size n 128 64 128 256 128
training time (min/epoch) 42 32 48 74 58
model size (MB) 4.6 1.6 5.0 17.9 5.8
best validation loss 0.455 0.455 0.452

å Large capacity generalizes best!

22/25

Evaluation with the Prover

Num.probs solved by V and its RvNN boosted variants

strategy V Hn128 Mn64 Mn128 Mn256 Dn128

solved 20 197 24 581 25 484 25 805 25 287 26 014
V+ +0 +5022 +5879 +6129 +5707 +6277
V− −0 −638 −592 −521 −617 −460

NN-eval.time 0% 37.1% 32.9% 37.7% 48.6% 36.7%

Points to note:
Dn128 solves almost 30% more problems than V

Could be even more greedy about the revealed axioms (m)
Going over the embedding size (n = 128) makes it too slow
It’s fine to spend 40% of time just thinking what the next
clause should be if it results in a good enough advice!

22/25

Evaluation with the Prover

Num.probs solved by V and its RvNN boosted variants

strategy V Hn128 Mn64 Mn128 Mn256 Dn128

solved 20 197 24 581 25 484 25 805 25 287 26 014
V+ +0 +5022 +5879 +6129 +5707 +6277
V− −0 −638 −592 −521 −617 −460

NN-eval.time 0% 37.1% 32.9% 37.7% 48.6% 36.7%

Points to note:
Dn128 solves almost 30% more problems than V
Could be even more greedy about the revealed axioms (m)

Going over the embedding size (n = 128) makes it too slow
It’s fine to spend 40% of time just thinking what the next
clause should be if it results in a good enough advice!

22/25

Evaluation with the Prover

Num.probs solved by V and its RvNN boosted variants

strategy V Hn128 Mn64 Mn128 Mn256 Dn128

solved 20 197 24 581 25 484 25 805 25 287 26 014
V+ +0 +5022 +5879 +6129 +5707 +6277
V− −0 −638 −592 −521 −617 −460

NN-eval.time 0% 37.1% 32.9% 37.7% 48.6% 36.7%

Points to note:
Dn128 solves almost 30% more problems than V
Could be even more greedy about the revealed axioms (m)
Going over the embedding size (n = 128) makes it too slow

It’s fine to spend 40% of time just thinking what the next
clause should be if it results in a good enough advice!

22/25

Evaluation with the Prover

Num.probs solved by V and its RvNN boosted variants

strategy V Hn128 Mn64 Mn128 Mn256 Dn128

solved 20 197 24 581 25 484 25 805 25 287 26 014
V+ +0 +5022 +5879 +6129 +5707 +6277
V− −0 −638 −592 −521 −617 −460

NN-eval.time 0% 37.1% 32.9% 37.7% 48.6% 36.7%

Points to note:
Dn128 solves almost 30% more problems than V
Could be even more greedy about the revealed axioms (m)
Going over the embedding size (n = 128) makes it too slow
It’s fine to spend 40% of time just thinking what the next
clause should be if it results in a good enough advice!

23/25

Looping and a Comparison to ENIGMA

Looping [Jakubův&Urban19]
iterate the learning and solving phases
keep learning also from the newly discovered proofs

å There: boosted tree learner over hand-crafted features

Performance comparison

ENIGMA [J&U19] Deepire
loop solved +S% solved +V% note
0 14 933 0.0 20 197 0.0
1 20 366 35.8 26 014 28.8 m = 2000
2 22 839 52.3 27 348 35.4 m = 3000
3 23 467 56.5 28 947 43.3 m = 5000
4 23 753 58.4
4’ 25 397 70.0

Points to note:
both show the effect of diminishing returns
ENIGMA climbs higher (relatively) from lower numbers

23/25

Looping and a Comparison to ENIGMA

Looping [Jakubův&Urban19]
iterate the learning and solving phases
keep learning also from the newly discovered proofs

å There: boosted tree learner over hand-crafted features

Performance comparison

ENIGMA [J&U19] Deepire
loop solved +S% solved +V% note
0 14 933 0.0 20 197 0.0
1 20 366 35.8 26 014 28.8 m = 2000
2 22 839 52.3 27 348 35.4 m = 3000
3 23 467 56.5 28 947 43.3 m = 5000
4 23 753 58.4
4’ 25 397 70.0

Points to note:
both show the effect of diminishing returns

ENIGMA climbs higher (relatively) from lower numbers

23/25

Looping and a Comparison to ENIGMA

Looping [Jakubův&Urban19]
iterate the learning and solving phases
keep learning also from the newly discovered proofs

å There: boosted tree learner over hand-crafted features

Performance comparison

ENIGMA [J&U19] Deepire
loop solved +S% solved +V% note
0 14 933 0.0 20 197 0.0
1 20 366 35.8 26 014 28.8 m = 2000
2 22 839 52.3 27 348 35.4 m = 3000
3 23 467 56.5 28 947 43.3 m = 5000
4 23 753 58.4
4’ 25 397 70.0

Points to note:
both show the effect of diminishing returns
ENIGMA climbs higher (relatively) from lower numbers

24/25

Outline

1 Saturation, Clause Selection, and Machine Learning

2 Recursive Neural Networks over Clause Derivations

3 Notes on Implementation and Training

4 Experiments on Mizar

5 Conclusion

25/25

Conclusion

Summary
Deepire explores ENIGMA-style clause selection guidance
deliberately focusing on just derivation history
informedness / speed of evaluation balance
convincing results on SMTLIB / MIZAR40

å https://github.com/quickbeam123/deepire3.1

Open
positive example selection is more tricky than it seems
(AVATAR, LRS, but already in DISCOUNT)
classification vs regression
What did the model actually learn? (XAI)

Outlook
looping is the first step towards RL
general ATP knowledge rather than benchmark-specific!

Thank you for attention!

https://github.com/quickbeam123/deepire3.1

25/25

Conclusion

Summary
Deepire explores ENIGMA-style clause selection guidance
deliberately focusing on just derivation history
informedness / speed of evaluation balance
convincing results on SMTLIB / MIZAR40

å https://github.com/quickbeam123/deepire3.1

Open
positive example selection is more tricky than it seems
(AVATAR, LRS, but already in DISCOUNT)
classification vs regression
What did the model actually learn? (XAI)

Outlook
looping is the first step towards RL
general ATP knowledge rather than benchmark-specific!

Thank you for attention!

https://github.com/quickbeam123/deepire3.1

25/25

Conclusion

Summary
Deepire explores ENIGMA-style clause selection guidance
deliberately focusing on just derivation history
informedness / speed of evaluation balance
convincing results on SMTLIB / MIZAR40

å https://github.com/quickbeam123/deepire3.1

Open
positive example selection is more tricky than it seems
(AVATAR, LRS, but already in DISCOUNT)
classification vs regression
What did the model actually learn? (XAI)

Outlook
looping is the first step towards RL
general ATP knowledge rather than benchmark-specific!

Thank you for attention!

https://github.com/quickbeam123/deepire3.1

25/25

Conclusion

Summary
Deepire explores ENIGMA-style clause selection guidance
deliberately focusing on just derivation history
informedness / speed of evaluation balance
convincing results on SMTLIB / MIZAR40

å https://github.com/quickbeam123/deepire3.1

Open
positive example selection is more tricky than it seems
(AVATAR, LRS, but already in DISCOUNT)
classification vs regression
What did the model actually learn? (XAI)

Outlook
looping is the first step towards RL
general ATP knowledge rather than benchmark-specific!

Thank you for attention!

https://github.com/quickbeam123/deepire3.1

25/25

Conclusion

Summary
Deepire explores ENIGMA-style clause selection guidance
deliberately focusing on just derivation history
informedness / speed of evaluation balance
convincing results on SMTLIB / MIZAR40

å https://github.com/quickbeam123/deepire3.1

Open
positive example selection is more tricky than it seems
(AVATAR, LRS, but already in DISCOUNT)
classification vs regression
What did the model actually learn? (XAI)

Outlook
looping is the first step towards RL
general ATP knowledge rather than benchmark-specific!

Thank you for attention!

https://github.com/quickbeam123/deepire3.1

	Saturation, Clause Selection, and Machine Learning
	

	Recursive Neural Networks over Clause Derivations
	Notes on Implementation and Training
	Experiments on Mizar
	Conclusion

