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Deepire =

Vampire
e Automatic Theorem Prover (ATP) for First-order Logic (FOL)
@ state-of-the-art saturation-based prover

Neural (ENIGMA-style) guidance
@ targeting the clause selection decision point
@ supervised learning from successful runs

w The special bit: uses a recursive neural network (RvNN)
based solely on clause derivation history
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In this talk:

@ overview of the main results, insights, and future outlooks



@ Saturation, Clause Selection, and Machine Learning
@ Recursive Neural Networks over Clause Derivations
© Notes on Implementation and Training

e Experiments on Mizar

© Conclusion



@ Saturation, Clause Selection, and Machine Learning



Saturation-based Theorem Proving

Resolution Factoring
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Resolution Factoring
AVG SAVG AVA'vVC
(GvG)o

avaor
where, for both inferences, 0 = mgu(A, A') and A is not an equality literal

Superposition

[=eva UshvG
nvavae 7

I=rv G ts, @t VG

(tlrlp@t'va v G)o
where 6 = mgu(l,s) and rf 10 and, for the left rule L[s] is not an equality
literal, and for the right rule @ stands either for ~ or % and t'0 # t[s]0

Preprocessing

Unprocessed

At a typical successful end: |Passive| > |Active| > |Proof |
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How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

/A:l A:2 A:3 A4 A:5 A:G\ b
1@\\/\/:4 w:3 A w:3 A\ w:s A w:3 A\ wie y age
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Machine-learned Clause Selection Guidance

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtiv&Urbanl7], ...

Technicalities:
@ supervised learning setup
e training examples ~ the selected clauses

o clausal representations R : C — R”"
o hand-crafted features, neural networks, ...

@ learning algorithm
o training yields a model M : R" — {0,1} (a binary classifier)

@ integrating the learned advice back to the saturation loop
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Adding the Learnt Advice M as Another Queue?

Priority:
@ sort by model's Y/N and tiebreak by age

a2 RN A5\ ae A
A A A A A

Logits:

@ even a binary classifier internally uses a real value

o 5 a0 n2 ho D)
A A A CUANIANTEA 4

Combine with the original strategy
/

1< .: :3 W .: .:
S®MM: 1/ 10\ 1 xz DO
A:3
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What Worked the Best?

Layered Clause Selection [Tammet19,G&S20]:

1 :: W::3 W 8 W ::
1 10</AZ A:X‘\: XA:G A:4\
QV:S W:3 A W: 4 A\ W:6 W:S/
SoSMY: -
2 A2
W:3

1
(<3
10 A:2

QV:S




What Worked the Best?

Layered Clause Selection [Tammet19,G&S20]:
1@
1 10

S @ SMY]: ;
1
i
10

Advantages of LCS:
o keep using the well-tuned S also for the positively classified
o allows for the lazy evaluation trick [AITP20,CADE21]

@ a smooth transition from the original to the ML-boosted
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Represent Clauses by Their Derivation History

“Don’t look at what the clause says, only where it's coming from.”

‘Clzccs_ordinall H C:Factoring ‘

C,:t7_boole C,:Superposition ‘

Focusing on the MIZAR dataset here:
@ a large set of axioms A referenced by all the problems
@ each problem P consists of a conjecture Cp and a Ap C A

@ a small set of inference rules labeling the internal nodes
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Recursive Neural Networks over Clause Derivations

The idea of embeddings:

@ represent each clause C by a real vector v¢ € R”

Recursively compose the following neural building blocks:
@ init function /4 € R”, for every axiom type A
@ deriv function Dg : R" x --- x R” — R”, for every inference R
e eval function E : R” -+ R

Example (Evaluating the derivation from the previous slide)

VG, = I$conjecture

VG = lt3_subset

VCs = DReso/ution(VC27 VC3)
ves = Davatar(ve)

Cg is classified positive iff E(vg,) > 0

w NB: Constant work per clausel
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What Information Does the Network Mostly Pick Up On?

1) Axioms (and the init function)
o |Anizar| &~ 43K, clipped to m=0.5/1/2K most frequent ones
o all others marked I5,nknown
@ the most important factor for good ATP performance

2) Inference rules (and the deriv function)

@ some form of deriv is obviously necessary for the recursion

@ but the ability to distinguish rules ~ extra 5% problems solved

3) Conjecture relatedness
@ in each problem, we mark conjecture clauses by Isconjecture

@ the network learns to incorporate the right level of goal
directedness
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Experience with PyTorch

Training in Python — inference from C++

@ good experience with TorchScript model export

@ almost any PyTorch code will get (VM-)interpreted in C++

Dynamic computational graphs:
@ elegant and flexible, but

@ training needs to keep building them over and over!
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Batching and Parallel Training Setup

Batching
@ group derivations to create similarly-sized chunks for training
@ merge equivalent nodes (within problem / across problems)
w However, this is not SIMD — only trained on CPUs

Master-worker parallel training setup:

w A funny “drift" effect that actually regularizes!



Validate and Compare to the ATP Performance
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Tweak Your Positive Bias

How often is M 100% correct?
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[CADE21]: leaning a bit positively improves ATP performance
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Experimental Setup

Mizar40 benchmark [Urban&Kaliszyk15]
@ 57880 problems in the TPTP format
@ MPTP export from the Mizar Mathematical Library

e the small, bushy (i.e., re-proving), version

% O
Oo

o

Fixed for the whole experiment:
@ a base strategy V:

e previously shown to work well on Mizar40

@ 10s time limit
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Training the First Models

Data preparation:
@ )V was able to solve 20197 problems
@ 800 MB of successful derivations (when zipped)
@ 43080 named Mizar axioms occurring in them
o largest derivation: 242023 (merged) nodes

How network size affects training:

model shorthand Hn128 Mn64 Mn128 M"256 Dn128
revealed axioms m 0.5K 1K 1K 1K 2K
embedding size n 128 64 128 256 128
training time (min/epoch) 42 32 48 74 58
model size (MB) 4.6 1.6 5.0 17.9 5.8
best validation loss 0.455 0.455 0.452

w | arge capacity generalizes best!
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Num.probs solved by V and its RvNN boosted variants
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Evaluation with the Prover

Num.probs solved by V and its RvNN boosted variants

strategy v an128 Mn64 Mn128 Mn256 Dn128
solved || 20197 || 24581 | 25484 25805 25287 | 26014
V+ +0 +5022 | +5879 +6129 +5707 | +6277
V- -0 —638 | —592 521 —617 —460
NN-eval.time 0% 37.1% | 329% 37.7% 48.6% | 36.7%

Points to note:
e D"28 solves almost 30 % more problems than V
@ Could be even more greedy about the revealed axioms (m)
e Going over the embedding size (n = 128) makes it too slow

@ It's fine to spend 40% of time just thinking what the next
clause should be if it results in a good enough advice!
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Looping and a Comparison to ENIGMA

Looping [Jakubiiv&Urban19]
@ iterate the learning and solving phases
@ keep learning also from the newly discovered proofs

w There: boosted tree learner over hand-crafted features

Performance comparison

ENIGMA [J&U19] Deepire
solved +S % solved +V% note

loop
0 14933 0.0 20197 0.0
1 20366 35.8 26014 28.8 m = 2000
2 22839 52.3 27348 354 m = 3000
3 23467 56.5 28947 433 m = 5000
4 23753 58.4
4 25397 70.0

Points to note:
@ both show the effect of diminishing returns
e ENIGMA climbs higher (relatively) from lower numbers
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Summary
@ Deepire explores ENIGMA-style clause selection guidance
deliberately focusing on just derivation history
@ informedness / speed of evaluation balance
@ convincing results on SMTLIB / MIZAR40
= https://github.com/quickbeam123/deepire3.1

Open
@ positive example selection is more tricky than it seems
(AVATAR, LRS, but already in DISCOUNT)
o classification vs regression
e What did the model actually learn? (XAl)

Outlook
@ looping is the first step towards RL
@ general ATP knowledge rather than benchmark-specific!

Thank you for attention!
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