
 https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/

Supported by the ERC Advanced Grant ALEXANDRIA, Project 742178

Yiannos Stathopoulos,

Angeliki Koutsoukou-Argyraki and

Lawrence Paulson

AITP 2020, September 13 – 19, 2020

Developing a Concept-Oriented Search Engine
for Isabelle Based on Natural Language:
 Technical Challenges

Department of Computer Science and Technology
 University of Cambridge

The ALEXANDRIA Project

● Create automated and semi-automated environments and
tools to aid working mathematicians

● Build tools for managing large bodies of formal Mathematical Knowledge

● Expand the libraries and AFP with new mathematical results

– Computer-aided Knowledge Discovery

– Intelligent Search

– Proof completion recommender systems

● Borrow ideas and techniques from Information Retrieval, Machine Learning and
Natural Language Processing

– Intelligent Search

Searching for Isabelle Facts – The Status Quo

● find_theorems: Limitations :

1. Inexperienced users might have an idea of what is needed to complete proof

2. Modern search users expect an experience akin to a google search box:

- Input a “bag-of-words” natural language description of need

- Quickly get back a list of results, ordered by relevance

3. Mathematical knowledge can be organised in different ways. It is thus
useful to have search results from the entire Isabelle libraries and AFP.

 NOT just the libraries currently loaded in the active session (“online”
search). “Offline” search required.

 BUT not enough experience with library organisation and naming
conventions to construct effective find_theorems queries

Overview of Challenges

Challenge 1: Offline Indexing of Isabelle facts

Challenge 2: Automatic modelling of formal mathematical knowledge using
 keywords and phrases

Challenge 3: Evaluating the effectiveness of Isabelle fact retrieval

- How do we extract from Isabelle scripts for effective indexing?

- We need a pre-computed and cached global index for fast search.

- How do we make formally expressed mathematics searchable using
 natural language?

- Make the libraries accessible to all Isabelle users

- How do we make large-scale reliable measurements of retrieval
 performance for Isabelle libraries?

The SErAPIS Search Engine

● Goal: Develop and evaluate a concept-oriented search engine that:

1. enables efficient offline search – query entire Isabelle collection in seconds

● SErAPIS: Search Engine by the Alexandria Project for ISabelle

2. allow Isabelle users to search libraries using a simple search box

3. support “conceptual search” rather than exact pattern matching

- users express queries as natural language bag-of-words

- queries are flexible approximations to information needs, rather than
 rigid pattern matching rules

- queries can include phrases that refer to “mathematical concepts”

4. Results are ordered by relevance

What do we mean by Concept-Oriented?

1. “understand” the mathematical concepts/ideas behind a search. Associate
 closely related notions.

- no need to specify information need explicitly in terms of patterns

2. A concrete unit of “mathematical concept”:

- Words or phrases that refer to mathematical constructs, objects and ideas

- Most are noun phrases pre-modified by adjectives

3. Dictionary of 1.23 million concept phrases extracted from subset of ArXiv

The SErAPIS Pipeline

Challenge 1: Offline Indexing of Isabelle Facts

● Isabelle users interact with theorem prover using Isabelle’s rich syntax

– includes: outer syntax commands, structured Isar proofs, inner syntax terms

● Offline indexing: we need to extract information from:

– Isabelle syntax

– Internal state of the theorem prover
● Complicated for two reasons:

1. Non-trivial to write an external parser of Isabelle’s syntax
 (syntax is ambiguous and valid parse trees selected after type-checking)

2. Useful information about Isabelle facts (e.g., types) in an Isabelle session must be
 retrieved from internal state of theorem prover.

Not easily achieved using external tools!

● Communication between prover and jEdit is message exchange

– Prover IDE (PIDE) messages update state of editor (e.g., syntax highlighting)

– PIDE messages generated after parsing and typing

● Information extraction through interpretation of PIDE messages

– Use isabelle-dump tool in simulated sessions of Isabelle theories

– Output is an XML stream of commands (at all levels)

● Tokenise and chunk PIDE command blocks belonging to facts

– Build a feature extractor on top of PIDE tokeniser/chunker output

Feature Extraction

– BUT our methods can be applied on live Isabelle sessions

PIDE Example

<accepted>
 <running>
 <finished>
 <keyword1 kind="command">
 <entity ref="40626" def_offset="19441"
def_file="~~/src/Pure/Pure.thy" def_id="2" kind="command"
def_line="524" name="lemma" def_end_offset="19446">
 <text>
 lemma
 </text>
 </entity>
 </keyword1>
 <entity def="13291686" kind="fact"
name="Gauss.GAUSS.finite_B">
 <entity def="13291698" kind="fact" name="local.finite_B">
 <text>
 finite_B
 </text>
 </entity>
 </entity>
 <delimiter>
 <no_completion>
 <text>
 :
 </text>

HOL-Number_Theory/Gauss.thy

Tokeniser Example
<command 1> 'lemma'
 <text>'lemma'
<fact ::fact meta=local.finite_B> 'finite_B'
<delimiter> ':'
<proposition delimited=true antiquotes=false meta=null>
 <text>'"'
 <text>'"'
<command 1> 'by'
 <text>'by'
<method meta=null>
 <delimiter> '('
 <operator operator> 'auto'
 <command 4 method_modifier> 'simp'
 <command 4 method_modifier> 'add'
 <delimiter> ':'
 <fact ::fact meta=local.B_def> 'B_def'
 <fact ::fact meta=local.finite_A> 'finite_A'
 <delimiter> ')'
<command 1> 'lemma'
 <text>'lemma'
<fact ::fact meta=local.finite_C> 'finite_C'
<delimiter> ':'
<proposition delimited=true antiquotes=false meta=null>
 <text>'"'
 <text>'"'
<command 1> 'by'
.
.
.

HOL-Number_Theory/Gauss.thy

Chunker Example
===========
Chunk 19
================
<command 1> 'lemma'
 <text>'lemma'

<fact ::fact meta=local.finite_B> 'finite_B'

<delimiter> ':'

<proposition delimited=true antiquotes=false meta=null>
 <text>'"'
 <function type::{typing::{ meta='Int.int' meta='Set.set' meta='fun'
meta='HOL.bool' }}>> finite
 <function type::{typing::{ meta='Int.int' meta='Set.set' }}>> B
 <text>'"'

<command 1> 'by'
 <text>'by'

<method meta=null>
 <delimiter> '('
 <operator operator> 'auto'
 <command 4 method_modifier> 'simp'
 <command 4 method_modifier> 'add'
 <delimiter> ':'
 <fact ::fact meta=local.B_def> 'B_def'
 <fact ::fact meta=local.finite_A> 'finite_A'
 <delimiter> ')'

HOL-Number_Theory/Gauss.thy

Extracted Features

Challenge 2: Automatic modelling of formal
 mathematical knowledge

● How do we model formal mathematical knowledge?

– Maybe map keywords and special phrases to Isabelle facts?

● A viable solution must not only perform well but be applicable at scale

– Thousands of facts in the Isabelle libraries and AFP

● Mathematical knowledge almost exclusively in Isabelle’s formal language

– How to map natural language to Isabelle facts is not straight-forward

● Mathematical knowledge almost exclusively in Isabelle’s formal language

Fact Representations From Wikipedia

2. We can model mathematical knowledge for large-scale retrieval.

– Thousands of facts in the Isabelle libraries and AFP

- Allows us to model mathematical knowledge such that:

● Mapping Isabelle facts to keywords and concepts from Wikipedia:

1. We can use established techniques in AI, Information Retrieval and
Natural Language Processing for knowledge representation

e.g., Vector Space Model, Jaccard coefficient, cosine similarity, LSI

● Our approach: Assign word and concept term vectors to facts from Wikipedia
Mathematics articles

Mapping Facts to Wikipedia Articles - I

Wikipedia dump
(5m articles)

Dictionary of
Math concepts
(1.23m phrases)

Text and concept
Indexer

Math Article
Filter

Wikipedia Mathematics
categories (733)

Lucene Wikipedia Math
Index

Step 1. Index (keywords and concepts) Wikipedia maths articles

tf model of concepts

tf model of words

Question: How do we map Isabelle facts to Wikipedia articles?

– Keywords and concepts from a fact’s name

– Keywords and concepts from comments around a fact

Step 2. Perform one Wikipedia index search per fact using query built from:

– Keywords and concepts from the source theory (background model)

Mapping Facts to Wikipedia Articles - II

– Keywords and concepts
 from a fact’s name

– Keywords and concepts
 from comments near to
 or in the body of a fact

– Keywords and concepts
 from source theory

FACT ARTICLE

1. Title words1. Title words

2. Article body words

4. Article concepts

3. Title concepts

Mapping Facts to Wikipedia Articles - III

(HOL-Algebra/Lattice.thy)
Cauchy_Schwarz_ineq meet_dual

(HOL-Analysis/Inner_Product.thy)

Mapping Facts to Wikipedia Articles - IV

Generating Representations for Facts

Method 1:

Method 2:

Method 3:

Term Vector for Fact Concept Vector for Fact

Sum up top 20 article term
vectors

Sum up top 20 article concept
vectors

Select 100 important words
from top 20 articles using
TF-IDF metric

Select 100 important concept
phrases from top 20 articles using
TF-IDF metric

Find the set that maximises
the overlap of words between
the top-20 articles using the
Jaccard coefficient

Find the set that maximises
the overlap of concepts
between the top-20 articles
using the Jaccard coefficient

Step 3. Generate description for fact from the 20 most relevant articles:
– Build a distributional profile for each fact and the source theory from the
 20 top-ranking Wikipedia articles

Preliminary Evaluation - I

● Carefully constructed 25 queries to simulate a user describing a fact.
1. Came up with an information need and an example fact that satisfies it.

2. Wrote down keywords that describe it that do not exactly match its name
 to test concept associations e.g. “summability”, “zero”, “criterion” instead
 of “summable”, “null”, “test”.

3. Selected concept phrases from our dictionary that are topically related to
 the example fact

● Conducted over the Isabelle library only, did not include the AFP.

● Retrieval Models

- Baseline (model 4): keywords only (no concept phrases)

Preliminary Evaluation - II

- Three methods presented earlier

● Relevance judgements

- Produced manually by Angeliki for all methods. Judged for relevance only
 the first 20 results for each method.

- Recorded using the SErAPIS desktop user interface

● Lucene query generation done consistently across methods

Must contain main notion to be judged as relevant. If contains only secondary
notion judged as irrelevant -judged by case.

- Pooled relevance judgements from all methods for evaluation

Preliminary Evaluation - III
● Results

- X > Y : difference statistically significant at α = 0.05

- Significance tested using the paired Permutation (non-parametric) test

- Performance measured in terms of Mean Average Precision (MAP)

Challenge 3: Evaluating Effectiveness of Isabelle
Fact Retrieval

1. No baseline to compare our methods against

– Results from find_theorems are unranked

AND

– depend on the libraries loaded by the user

2. There is no large-scale test collection of Isabelle facts

- Need realistic queries from working mathematicians

– depend on the libraries loaded by the user

- Thousands of facts to judge relevance against

Large-scale Evaluation

● Plan: build a data set for large-scale Isabelle search research and evaluation

● We want to make SErAPIS available online for the Isabelle community:

- Isabelle users can benefit from concept-oriented Isabelle search

- We collect real-life queries and relevance decisions anonymously

Compile a large (anonymised) search data set for public release

SErAPIS Online Isabelle Search Engine

Demo

Ongoing and Future Work

1. Identify and make searchable proof idioms.

3. Deep indexing of libraries for recommending next steps in interactive proofs.

2. Support formula search for matching propositions (statement and proofs).

- Integrate SErAPIS to Isabelle and offer relevant suggestions in real-time.

Thank you for your time.

Questions?

For more details see:

- Stathopoulos, Koutsoukou-Argyraki and Paulson: SErAPIS: A Concept-Oriented
 Search Engine for the Isabelle Libraries Based on Natural Language, to appear in the
 Informal proceedings of the Isabelle 2020 Workshop affiliated to ICJAR 2020, (in
 Virtual Space), June 30, 2020.
 https://files.sketis.net/Isabelle_Workshop_2020/Isabelle_2020_paper_4.pdf

- Stathopoulos, Koutsoukou-Argyraki and Paulson: Developing a Concept-Oriented
 Search Engine for Isabelle Based on Natural Language : Technical Challenges, to
 appear in the informal proceedings of the 5th Conference on Artificial Intelligence
 and Theorem Proving (AITP 2020), Aussois, France, Mar. 22-27, POSTPONED TO
 Sept. 13-18, 2020.
 http://aitp-conference.org/2020/abstract/paper_9.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

