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Abstract

Bundy, A., A. Stevens, F. van Harmelen, A. Ireland and A. Smaill, Rippling: a heuristic
for guiding inductive proofs, Artificial Intelligence 62 (1993) 185-253.

We describe rippling: a tactic for the heuristic control of the key part of proofs by
mathematical induction. This tactic significantly reduces the search for a proof of a
wide variety of inductive theorems. We first present a basic version of rippling, followed
by various extensions which are necessary to capture larger classes of inductive proofs.
Finally, we present a generalised form of rippling which embodies these extensions as
special cases. We prove that generalised rippling always terminates, and we discuss the
implementation of the tactic and its relation with other inductive proof search heuristics.

https://era.ed.ac.uk/bitstream/handle/1842/4748/BundyA_Rippling%20A%20Heuristic.pdf;sequence=1
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IsaPlanner 2: A Proof Planner for Isabelle

Lucas Dixon and Moa Johansson

School of Informatics, University of Edinburgh

Abstract. We describe version 2 of IsaPlanner, a proof planner for the
Isabelle proof assistant and present the central design decisions and their
motivations. The major advances are the support for a declarative pre-
sentation of the proof plans, reasoning with meta-variables to support
middle-out reasoning, new proof critics for lemma speculation and case
analysis, the ability to mix search strategies, and the inclusion of a
higher-order version of rippling that can use best-first search. The re-
sult is a more flexible and powerful proof planner for exploring proof
automation in Isabelle.

1 Introduction

Proof assistants, such as Isabelle [10], Coq [11] and HOL [7], provide a frame-
work for formalisation tasks such software verification and mechanised mathe-
matics. Typically, automation is developed by writing programs, called tactics,
that combine operations from a small trusted kernel. Although many forms of
proof automation are already available, developing new tactics and extending
existing ones can be difficult. Higher-level concepts, such as search space and
heuristic guidance, must be developed on top of the the logical kernel.

Proof Planning provides this kind of high-level machinery for encoding and
applying common patterns of reasoning [2]. When encoded in a proof planner
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Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen
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{jomoa,danr,nicsma,koen}@chalmers.se

Abstract. This paper describes Hipster, a system integrating theory
exploration with the proof assistant Isabelle/HOL. Theory exploration
is a technique for automatically discovering new interesting lemmas in
a given theory development. Hipster can be used in two main modes.
The first is ezploratory mode, used for automatically generating basic
lemmas about a given set of datatypes and functions in a new theory
development. The second is proof mode, used in a particular proof attempt,
trying to discover the missing lemmas which would allow the current
goal to be proved. Hipster’s proof mode complements and boosts existing
proof automation techniques that rely on automatically selecting existing
lemmas, by inventing new lemmas that need induction to be proved. We
show example uses of both modes.

1 Introduction

The concept of theory exploration was first introduced by Buchberger [2]. He
argues that in contrast to automated theorem provers that focus on proving
one theorem at a time in isolation, mathematicians instead typically proceed
by exploring entire theories, by conjecturing and proving layers of increasingly
complex propositions. For each layer, appropriate proof methods are identified,
and previously proved lemmas may be used to prove later conjectures. When a
new concept (e.g. a new function) is introduced, we should prove a set of new
conjectures which, ideally, “completely” relates the new with the old, after which
other propositions in this layer can be proved easily by “routine” reasoning.
Mathematical software should be designed to support this workflow. This is
arguably the mode of use supported by many interactive proof assistants, such
as Theorema. [3] and Tsahelle [T71. However. thev leave the seneration of new
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A Proof Strategy Language and Proof Script
Generation for Isabelle/HOL

Yutaka Nagashima and Ramana Kumar

Data61, CSIRO / UNSW

Abstract. We introduce a language, PSL, designed to capture high level
proof strategies in Isabelle/HOL. Given a strategy and a proof obligation,
PSL’s runtime system generates and combines various tactics to explore a
large search space with low memory usage. Upon success, PSL generates
an efficient proof script, which bypasses a large part of the proof search.
‘We also present PSL’s monadic interpreter to show that the underlying
idea of PSL is transferable to other ITPs.

1 Introduction

Currently, users of interactive theorem provers (ITPs) spend too much time iter-
atively interacting with their ITP to manually specialise and combine tactics as
depicted in Fig. [Ta] This time consuming process requires expertise in the ITP,
making ITPs more esoteric than they should be. The integration of powerful
automated theorem provers (ATPs) into ITPs ameliorates this problem signifi-
cantly; however, the exclusive reliance on general purpose ATPs makes it hard
to exploit users’ domain specific knowledge, leading to combinatorial explosion
even for conceptually straight-forward conjectures.

To address this problem, we introduce PSL, a programmable, extensible,
meta-tool based framework, to Isabelle/HOL [21]. We provide PSL (available on
GitHub [17]) as a language, so that its users can encode proof strategies, abstract

proof goal W( intermediate goal ]
T
L

[[strategy]] {[context]tactic sub-toot

/—\ oo /A A o
. C 73
“ —"

proved theorem / efficient tactic proved theorem /
subgoals / message subgoals / message

(a) Standard proof attempt (b) Proof attempt with PSL
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Abstract

(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and
theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques
and tools for automatically proving general (most often first-order) theorems. Nowadays, the field
of TP has reached a certain degree of maturity and powerful TP systems are widely available and
used. The situation with ITP is strikingly different, in the sense that proving inductive theorems
in an essentially automatic way still is a very challenging task, even for the most advanced existing
ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process
are of fundamental importance, in automated as well as in interactive or mixed settings. In the
paper we will analyze and discuss the most important strategic and proof search issues in ITP,
compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we
will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t.
automation, on different levels and from different points of views. Finally, based on this analysis
we will present some theses about the state of the art in the field, possible criteria for what could
be considered as substantial progress, and promising lines of research for the future, towards (more)
automated ITP.

Keywords: Inductive theorem proving, automated theorem proving, automation, interaction,
strategies, proof search control, challenges.




Proof by induction is hard!

Available online at www.sciencedirect.com

sclencs((i)nmscr« Electronic Notes in
Theoretical Computer

Science

www.elsevier.com/locate/entcs

Strategic Issues, Problems and Challenges in
Inductive Theorem Proving

Bernhard Gramlich?

In the near future, ITP (Inductive theorem proving) will only be successful
for very specialised domains for very restricted classes of conjectures.

and 00 OI' autoIna d -l"’v O er €Orenns. ""ala' ne eld
of TP has reached a certain degree of maturity and powerful TP systems are widely available and
used. The situation with ITP is strikingly different, in the sense that proving inductive theorems
in an essentially automatic way still is a very challenging task, even for the most advanced existing
ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process
are of fundamental importance, in automated as well as in interactive or mixed settings. In the
paper we will analyze and discuss the most important strategic and proof search issues in ITP,
compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we
will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t.
automation, on different levels and from different points of views. Finally, based on this analysis
we will present some theses about the state of the art in the field, possible criteria for what could
be considered as substantial progress, and promising lines of research for the future, towards (more)
automated ITP.

Keywords: Inductive theorem proving, automated theorem proving, automation, interaction,
strategies, proof search control, challenges.




Proof by induction is hard!

Available online at www.sciencedirect.com

sCIENCE(dDIRECT" Electronic Notes in
Theoretical Computer
Science

www.elsevier.com/locate/entcs

Strategic Issues, Problems and Challenges in
Inductive Theorem Proving

Bernhard Gramlich?

In the near future, ITP (Inductive theorem proving) will only be successful
for very specialised domains for very restricted classes of conjectures.

and 00 OI' autoIna d Yy Prov LI'V’VI mo O er ~order €Orenns. ""ala' S eld
of TP has reached a certain degree of maturity and powerful TP systems are widely available and
used. The situation with ITP is strikingly different, in the sense that proving inductive theorems

we are convinced that ... spectacular breakthroughs are unrealistic, in
view of the enormous problems and the inherent difficulty of inductive
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proof by induction in Isabelle/HOL

The example theorem is taken from “Isabelle/HOL A Proof
Assistant for Higher-Order Logic” Tobias Nipkow, Lawrence C.
Paulson, Markus Wenzel page 36
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD
Jimports "Smart Isabelle.Smart Isabelle"
- Jbeginfj

cprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1l::nat, 2, 3]"

qufun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

qutheorem "itrev xs ys rev xs @ ys"

W oopsS

Proof state Auto update Update Sear... v 100% ¢

B « Output Query Sledgehammer Symbols

3,6 (58/383) Matches line 22: end (isabelle,isabelle,UTF-8-Isabelle) U.. IZE¥512MB 12:19 PM

SaL03YL  1BIS PDPPIS 4 B
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

letheory FMCAD

c ' Jimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
g 4 "rev [] = [1"

£.0] "rev (x # xs) = rev xs @ [xI'}

Jvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

W oOopS

Proof state Auto update Update Sear... v 100% ¢

consts
rev :: "'a list = 'a list"

B « Output Query Sledgehammer Symbols
7,32 (154/383) (isabelleisabelle, UTF-8-Isabelle) U.. IEEJE 12MB 12:19 PM

SaL03YL  1BIS PDPPIS 4 B
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1::nat, 2, 31}

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

cvtheorem "itrev xs ys rev xs @ ys"

W oOopS

II[3’ 2’ 1]II
"nat list"

B « Output Query Sledgehammer Symbols
9,27 (182/383)

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% <

U.. IEEEJE 2MB 12:19 PM

SaL03YL  1BIS PDPPIS 4 B
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File Browser Documentation 4 £

|| "rev (x # xs)

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

f "rev [] = [1"
rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

on/fun itrev :: "'a list = 'a list = 'a list" where

¢ "itrev [] ys = ys"

o "itrev (x # xs) ys = itrev xs (x#ys)l]

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

W oOopS

Proof state Auto update Update Sear...

consts
itrev :: "'a list = 'a list = 'a list"
Found termination order: "(Ap. length (fst p)) <*mlex*> {}"

B « Output Query Sledgehammer Symbols

13,40 (299/383)

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% <

U.. BEREJERI2MB 12:19 PM

SaL03YL  1BIS PDPPIS 4 B
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

2, 31 11I'R

rev xs @ ys"

s\value "itrev [1::nat

~-

cvtheorem "itrev xs ys

W oOopS

II[3’ 2’ 1]II
"nat list"

B « Output Query Sledgehammer Symbols
15,32 (332/383)

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% <

U.. BEEEVERPIMB 12:19 PM

SaL03YL  1BIS PDPPIS 4 B
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

letheory FMCAD

c ' Jimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = []"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

onfun itrev :: "'a list = 'a list = 'a list" where

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

-/theorem "itrev xs ys = rev xs @ ys'[}

W oOopS

Proof state Auto update Update Sear... v 100% ¢

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys

B « Output Query Sledgehammer Symbols
17,36 (369/383) (isabelleisabelle, UTF-8-Isabelle) U.. 82/512MB 12:19 PM

SaL03YL  1BIS PDPPIS 4 B
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

letheory FMCAD

c ' Jimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = []"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"
apply|(linduct xs ys rule: itrev.induct)li

=
©

~

@ Proof state [ Auto update Update Sear... ¥ 100% 9
goal (2 subgoals):
1. Ays. itrev [] ys = FMCAD.rev [] @ ys
2. AX Xs ys.
itrev xs (x # ys) = FMCAD.rev xs @ X # ys —
itrev (x # xs) ys FMCAD.rev (x # xs) @ ys

B « Output Query Sledgehammer Symbols
18,41 (410/423) Matches line 1: theory FMCAD (isabelleisabelle, UTF-8-Isabelle) U.. 81/512MB 12:20 PM

SaL03YL  1BIS PDPPIS 4 B
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = [1"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

ofun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"
apply|(linduct xs ys rule: itrev.induct)li

=
©

Proof state Auto update

goal (2 subgoals):
1. Ays. itrev [] ys = FMCAD.rev [] @ ys
2. AX Xs ys.
itrev xs (x # ys) = FMCAD.rev xs @ X # ys —
itrev (x # xs) ys FMCAD.rev (x # xs) @ ys

B « Output Query Sledgehammer Symbols
18,41 (410/423) Matches line 1: theory FMCAD

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. [B1/512MB 12:20 PM

SaL03YL  1BIS PDPPIS 4 B
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|| "rev (x # xs)

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

f "rev [] = [1"
rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

onfun itrev :: "'a list = 'a list = 'a list" where

o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

apply(induct xs ys rule: itrev.induct)apply autofjdone

=
©

Proof state Auto update Update

proof (prove)
goal:
No subgoals!

B « Output Query Sledgehammer Symbols

18,51 (420/431) Matches line 1: theory FMCAD

Sear...

(isabelle,isabelle,UTF-8-Isabelle)
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U.. l9/512MB 12:21 PM
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

onfun itrev :: "'a list = 'a list = 'a list" where

o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

=
©

applyl(linduct xs arbitrary: ys)jj

Proof state Auto update Update

1. Ays. itrev [] ys = FMCAD.rev [] @ ys

2. N\a xs ys.
(Ays. itrev xs ys = FMCAD.rev xs @ ys) —
itrev (a # xs) ys = FMCAD.rev (a # xs) @ ys

B « Output Query Sledgehammer Symbols

18,33 (402/414)

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. lE9/512MB 12:21 PM

SaL03YL  1BIS PDPPIS 4 B
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) = rev xs @ [x]"

File Browser Documentation 4 E
'S
SuOo3Y| 23BIS PDPRPIS 4 B

Jvalue "rev [1l::nat, 2, 31"

ofun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"
applyl(linduct xs arbitrary: ys)jj

=
©

Proof state Auto update Update  Sear... v 100% ¢

1. Ays. itrev [] ys = FMCAD.rev [] @ ys

2. N\a xs ys.
(Ays. itrev xs ys = FMCAD.rev xs @ ys) —
itrev (a # xs) ys = FMCAD.rev (a # xs) @ ys

B « Output Query Sledgehammer Symbols

18,33 (402/414) (isabelle,isabelle,UTF-8-Isabelle) U.. lE9/512MB 12:21 PM
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"
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qvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

Tutheorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) apply autofjdone

=
©

Proof state
proof (prove)
goal:
No subgoals!
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"
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Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

/theorem "itrev xs ys = rev xs @ ys/'[}
18 try_hard

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys
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onfun itrev :: "'a list = 'a list = 'a list" where

Proof state
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"
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Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

/theorem "itrev xs ys = rev xs @ ys/'[}
18 t ry_ha rd

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys

B « Output Query Sledgehammer Symbols

17,36 (369/391) Matches line 19: oops

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update
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(isabelle,isabelle,UTF-8-Isabelle)
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = [1"

4] "rev (x # xs) = rev xs @ [x]"

qvalue "rev [1l::nat, 2, 3]"

ofun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

oltheorem "itrev xs ys = rev xs @ ys'"B

« try_hard NVVOY\:‘ )

Proof state Auto update Update  Sear... v 100% ¢

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys

B « Output Query Sledgehammer Symbols
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfsbegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = [1"

4] "rev (x # xs) = rev xs @ [x]"

qvalue "rev [1l::nat, 2, 3]"

quffun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

qvtheorem "itrev xs ys = rev xs @ ys"

try_hardj] UVVOY\L‘ )

=
©

Proof state Auto update Update = Sear... ¥ 100% C

subgoal
apply (induct xs arbltrary ys)
apply auto

done
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
- Jbegin

{primrec rev :: "'a list = 'a list" where
 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 31"

o "itrev [] ys = ys"
itrev xs (x#ys)"

svalue "itrev [1l::nat, 2, 3] []"

stheorem "itrev xs ys = rev Xxs @ ys
try_hard]j -

=
©

subgoal
apply (induct xs arbltrary ys)
apply auto

done

B « Output Query Sledgehammer Symbols

18,11 (380/391)

ofun itrev :: "'a list = 'a list = 'a list" where
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
- Jbegin

cfprimrec rev :: "'a list = 'a list" where

 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 31"

o "itrev [] ys = ys"
itrev xs (x#ys)"

svalue "itrev [1l::nat, 2, 3] []"

stheorem "itrev xs ys =
try_hard]j

=
©

subgoal
apply (induct xs arbltrary ys)
apply auto

done
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18,11 (380/391)
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Good for easy problews.

ofun itrev :: "'a list = 'a list = 'a list" where
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| "itrev (x # xs) ys

FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
> Jbegin
primrec rev :: "'a list = 'a list" where
"rev [] = []"
4| "rev (x # xs) = rev xs @ [x]"
value "rev [1l::nat, 2, 3]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ysS ys"
itrev xs (x#ys)"

value "itrev [1l::nat, 2, 3] []"

theorem "itrev xs ys = rev xs @ ys

try_hardj] 0{\(\ 2 -

subgoal ‘ ‘

apply (induct xs arbltrary ys)
apply auto

done

¥ Output Query Sledgehammer Symbols
380/391)

Good for easy problems,

Bad for hard problews.
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Good news for automation.,

(For most cases) we c;mi.j have to pass the right arguments to the induction tactic,

Bad news for automation,

Names do not makker gLObO\LL‘j. Skructures malkber,

ALL theorems must be different,

We should not have many similar theorems,

lemma "itrev xs ys =
by(induct xs ys rule:

lemma "itrev [1,2]

lemma "itrev [1,2,3]

lemma "itrev [''a'',''b'"]
lemma “itrev [X,y,z]
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Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Bad hews for automation,

Names do not makker glcbatttj. Skruckures maktter.
ALL theorems must be different,

We should not have many similar theorems,.

lemma "itrev xs ys =

lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z2]

~— e
et et e e

rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto

rev
rev
rev
rev

<~ abstraction using expressive Logic

[1,2] @ [1" by auto
[1,2,3] @ []" by auto
[Ilall'llbll] @ []II by auto
[x,y,z] @ [1" by auto
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Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Neural network?
Bad hews for automation,

Names do not makker gLobo\LLtj. Skruckures maktter.
ALL theorems must be different,

We should not have many similar theorems,.

Qemma "itrev xs ys = rev xs @ ys" <~ owne abstract represemio&iom
y(induct xs ys rule:"itrev.induct") auto

<~ abstraction using expressive Logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto )

lemma "itrev [''a'',''b''] [l =rev [''a'',"'b''] @ []1" by auto | <~ Maly cohcrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto
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lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

‘Qemma "itrev xs ys =

y(induct xs ys rule:"itrev.induct") auto

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z]

rev xs @ ys"

~— e
et et e e

rev
rev
rev
rev

[1,2]

[1,2,3]
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[x,y,z]
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lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

Grand Challenge: Abstract Abstraction

emma "itrev xs ys =
y(induct xs ys rule:"itrev.induct") auto

* ﬁ <= abstraction using expressive logic

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,2]

rev xs @ ys"

~— e
et et e e

rev
rev
rev
rev

[1,2]

[1,2,3]
[Ilall'llbll]
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Grand Challenge: Abstract Abstraction

é%&emma "star r x y = star r y z = star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ exec is2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = My 2 @ ys” <~ ohe abstract representation
L by(induct xs ys rule:"itrev.induct") auto 4}

ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto )
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto
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Grand Challenge: Abstract Abstraction

<~ pros: good at rigorous abstraction

é?&emma star r x y = star ry z = star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ‘; exec 1s2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
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<~ pros: good at rigorous abstraction

mma sarrxy:>starryz=>starrxz\
(1nduct10n rule: star.induct) (auto simp: step)

lemma "exec (isl @ is2) s stk = <~ small dataset abouk
‘% exec is2 s (exec isl s stk)" different domains
y(induct isl s stk rule:exec.induct) auto
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Grand Challenge: Abstract Abstraction

[[ g]s [ ]! [ ]]: bool list - simple representation

<~ pros: good at rigorous abstraction

é%&emma star r x y = star ry z = star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ exec is2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = My 2 @ ys” <~ ohe abstract representation
L by(induct xs ys rule:"itrev.induct") auto 4}

* ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto )
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto



Grand Challenge: Abstract Abstraction

ﬁ <= pros: good at o\mbiguifz\j (heuristics)
[[ ], [ ], [ ]i: bOOl IiSt <= simple representation
ﬁ <= pros: good at rigorous abstraction
é?%emma star r x y = star ry z — star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ‘; exec is2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = rev xs @ ys” <~ ohe abskract representation
L by(induct xs ys rule:"itrev.induct") auto 4/

ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto )
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto



Grand Challenge: Abstract Abstraction

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains.
< iros: good at ambiguity (heuristics)

[[ ]! [ ], [ ] : bOOI IiSt <~ simpte rapresem&a&ion
ﬁ <- pros: good at rigorous abstraction
?ﬁemma sarrxy:>starryz=>starrxz"\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1is2) s stk = <~ small dataset about
‘% exec 1is2 s (exec isl s stk)" different domains
y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = My 2 @ ys" <~ ohe abstract representation
L by(induct xs ys rule:"itrev.induct") auto J
* ﬁ <~ abstraction using expressive logic
lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',"'b''] @ [1" by auto | <~ ™Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2] @ []1" by auto
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Logical

Feature
Extraction

Grand Challenge: Abstract Abstraction

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains.

]

<~ pros: good at ambiguity (heuristics)
i: bOOI IiSt <= simple representation

<~ pros: good at rigorous abstraction

A

te sarrxy=>starryz=>starrxz"\
by(induction rule: star.induct) (auto simp: step)

lemma "exec (isl @ 1s2) s stk =

exec 1s2 s (exec isl s stk)"

emma "itrev xs ys =
y(induct xs ys rule:"itrev.induct") auto J

by (induct isl s stk rule:exec.induct) auto

rev xs @ ys"

<~ small dataset about
different domains

<~ one abstract representation

lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z]

~— e
et et e e

rev
rev
rev
rev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,2]

ﬁ <~ abstraction using expressive logic

@ [1" by auto
@ [1" by auto
@ [1" by auto | <= ™Mahy concerebte cases
@ [1" by auto



Example Heuristic in LiFtEr (in Abstract Syntax)

d rl : rule. True
_>
d rl : rule.
4 ¢1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n
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d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n



Example Heuristic in LiFtEr (in Abstract Syntax)

metiaa&icm

JEI rl : rule. True
— ,

4 rl : rule.

J GINEerm. ... variable for terms
3 tol : term_occurrence tl1 : term
r1 is rule of tol g—“ variable for term occurrences

AN e con junction
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

variable for auxiliary lemmas



Example Heuristic in LiFtEr (in Abstract Syntax)

metito&icm

JEI rl : rule. True
— ,

4 rl : rule.

3¢l : term. 4 variable for terms

J tol : term_occurrence t1 : +term _
rl is rTule of tol é""‘“ variable for term occurrences

A e con junction
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
J @ S numbery - ‘ariable for natural numbers
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

variable for auxiliary lemmas



Example Heuristic in LiFtEr (in Abstract Syntax)

metica&icm

Jﬂ rl : rule. True
— o

4 rl : rule.

3 t1 : term. 4 variable for terms

d tol : term_occurrence tl1 : +term _
rl is rTule of tol é""‘“ variable for term occurrences

N e con junction
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

J @ S numbery - ‘ariable for natural numbers
is_nth_argument_of (t02, n, tol)

variable for auxiliary lemmas

uhiversal
quant ier A

t2 is_nth_induction_term n



Example Heuristic in LiFtEr (in Abstract Syntax)

LmFLLtaLLom existential quom&hcier

JEI rl : rule. True

3 rl : rule.

3¢ CEXM. ... variable for terms

- tol : term_occurrence tl - term 4
rl is rTule of tol E""‘” variable for term occurrences

A | e con junction
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

J @ S numbery - ‘ariable for natural numbers
is_nth_argument_of (t02, n, tol)

variable for auxiliary lemmas

universal
quant ier A

t2 is_nth_induction_term n



Example Heuristic in LiFtEr (in Abstract Syntax)

LiFtEr heuristic: ( proof goal * induction arguments ) -> bool

4 rl : rule. True
_>
4 rl : rule.
3 ¢t1 : term.
d(tol : term_occurrence € tl1 : term
rl is_rule_of tol
N\
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n



Example Heuristic in LiFtEr (in Abstract Syntax)

LiFtEr heuristic: ( proof goal * induction arguments ) -> bool

should be true if induction is good
should be false if induction is bad

4 rl : rule. True
_>
4 rl : rule.
3 ¢t1 : term.
d(tol : term_occurrence € tl1 : term
rl is_rule_of tol
N\
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n



primrec rev "'a list = 'a list" where

"rev [] = []1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done
4 rl : rule. True
_>

d rl : rule.
d ¢l : term.
d tol : term_occurrence € t1
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

: term.



primrec rev "'a list = 'a list" where

"rev [] = []1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done

aqood induction -»
9

4 rl : rule. True

_>
4 rl : rule.

d ¢l : term.
d tol : term_occurrence € t1
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

: term.



primrec rev "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done
d rl : rule. True
N rl
3 rl : rule. ( r1 = ibrev.iinduct )

4 ¢t1 : term.
4 tol : term_occurrence € tl

rl is_rule_of tol

A\
Y t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

N
t2 is_nth_induction_term n

: term.



primrec rev "'a list =
"rev [] [1" |
"rev (x # Xxs) = rev xs @
fun itrev :: "'a list =
"itrev [] ys = ys" |
= itrev

"itrev (x#xs) ys

lemma "itrev Xxs ys

good induction -»

apply auto done

4 rl : rule. True
_>
3 rl : rule. ( r1
d ¢l : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N

t2 is_nth_induction_term n

apply(induct xs ys rule:

‘a list" where

[x]"
‘a list = 'a list" where
XS (x#ys)"

rev xs @ ys"

"itrev.induct")

AN

rl

= ibreviinduct )



primrec rev "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done
4 rl : rule. True
N rl
d rl : rule. ( r1 = ibrev.iinduct )

d t1 : term. (E1 = ibrev )
4 tol : term_occurrence € tl1 : term.

rl is_rule_of tol

A\
Y t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



primrec rev "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol
lemma "itrev xs ys = rev xs @ ys"
qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto done
d rl : rule. True
— rl
3 rl : rule. ( vl = brevinduct )

d t1 : term. (E1 = ibrev )
d tol : term_occurrence € t1 : term. ( kol = ikrev )

rl is_rule_of tol

A\
Y t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



primrec rev :: "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol
lemma "itrev xs ys = rev xs @ ys"
qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto done
d rl : rule. True
— rl
3 rl : rule. ( r1 = ibrev.iinduct )

(E1 = ikrev )

d ¢l : term.
: term. ( kol = itrev )

4 tol : term_occurrence € tl
rl is_rule_of tol

A\
Y t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



primrec rev :: "'a list = 'a list" where
"reV [] — []u I

"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
CO
lemma "itrev xs ys = rev xs @ ys"
good induction -»  apply(induct xs ys rule:"itrev.induct")

apply auto done \\\\
4 rl : rule. True
— rl
J rl : rule. ( r1 = ibreviinduct )
d t1 : term. (k1 = ibtrev )
d tol : term_occurrence € tl1 : term. ( tol = ibrev )

PINISETULENOENIOI True' r1 (= itreviinduct) is a lemma about tol (= ikrev).
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n



primrec rev "'a list = 'a list" where

"rev [] = [1" ]
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
&
lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done \\\\

4 rl : rule. True
rl

_>
3 rl : rule. (vl = itrevinduct )
d t1 : term. (k1 = ibtrev )
d tol : term_occurrence € t1 : term. ( kol = ibrev )
r‘_rule_of tol True! rl (= tkreviinduct) is a lemma aboub tol (= ikrev).
A

V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



primrec rev :: "'a list = 'a list" where

"rev [] = [1" ]
"rev (x # xs) = rev xs @ [x]"

'a list = 'a list" where

fun itrev :: "'a list =
"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
O
lemma "itrev xs ys = rev xs @ ys"
qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto done “\\\
4 rl : rule. True
— rl
3 rl : rule. ( vl = brevinduct )

(E1 = ikrev )

d ¢l : term.
: term. ( kol = itrev )

4 tol : term_occurrence € tl
rlLAs_rule_of tol True! ri (= itreviinduct) is a lemma about tol (= iktrev).
AN

V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



primrec rev "'a list = 'a list" where

"rev [] = [1" ]
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
&
lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done X\\\

4 rl : rule. True
rl

_>
3 rl : rule. (vl = itrevinduct )
d t1 : term. (k1 = ibtrev )
d tol : term_occurrence € t1 : term. ( kol = ibrev )
r&_rule_of tol  True! r1 (= ibrev.induct) is a lemma about kol (= itrev).
N

V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



primrec rev :: "'a list = 'a list" where

"rev [] = [1" ]
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
O

lemma "itrev xs ys = rev xs @ ys"

qood induction -»  apply(induct_Xs ys rule:"itrev.induct")
apply auto Aone \\\\

3 rl : rule. True k2
rl

_>
4 rl : rule.

( r1 = tbreviinduct )
4 t1 : term. (k1 = ibrev )
d tol : term_occurrence € t1 : term. ( kol = itrev )

rlLAs_rule_of tol True' ri (= itrev.iinduct) is a lemma about kol (= ikrev).
N

V t2 : term € induction_term. (B2 = xs and ys )
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
toR

lemma "itrev{xs ys/é,rev Xs @ ys"

qood induction -»  apply(induct_Xs ys rule:"itrev.induct")
apply auto Aone \\\\

3 rl : rule. True k2
rl

tol

_>

d rl : rule. ( r1 = itreviinduct )

4 t1 : term. (k1 = tbrev )
d tol : term_occurrence € t1 : term. ( kol = itrev )

rlLAs_rule_of tol True' ri (= itrev.iinduct) is a lemma about kol (= ikrev).
N

(B2 = xs and ys )

YV t2 : term € induction_term.
(ko2 = xs and ys )

d to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n



_>

primrec rev :: "'a list =

"rev [] = []" ]

"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list =
"itrev [] ys = ys" |

'a list" where

'a list = 'a list" where

"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys/é,rev Xs @ ys"
good induction -» apply(induct xs ys rule:"itrev.induct")

apply auto fdone

3 rl : rule. True k2

4 rl : rule.
4 ¢l : term.

N

rl

( r1 = ibrev.iinduct )
= ikrev )
d tol : term_occurrence € t1 : term. ( kol = ibrev )
rlLAs_rule_of tol True! ri (= itreviinduct) is a lemma about tol (= iktrev).
N i

(t1

Y t2 : term € induction_term.

3 to2 :
dn :

A

term_occurrence € t2 : term.
number.
is_nth_argument_of (t02, n, tol)

t2 is_nth_induction_term n

( ko2

—
s

—
-

xs and ys )
xs and ys )



primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
toR

lemma "itrev xs ys/é/rev Xs @ ys"

qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto Aone \\\\

3 rl : rule. True k2
rl

tol

_>

d rl : rule. ( r1 = itreviinduct )

4 t1 : term. (k1 = tbrev )
d tol : term_occurrence € t1 : term. ( kol = itrev )

rlLAs_rule_of tol True' ri (= itrev.iinduct) is a lemma about kol (= ikrev).
N

(B2 = xs and ys )

Y t2 : term € induction_term.
(ko2 = xs and ys )

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol)

A\
t2 is_nth_induction_term n



primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol \\ first N /&02
lemma "itrev Xxs ys“= rev xs @ ys"

qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto AoﬁT \\\\

3 rl : rule. True k2
— first rt
3 rl : rule. ( r1 = tkreviinduct )

4 t1 : term. (1 = iktrev )

d tol : term_occurrence € t1 : term. ( kol = itrev )
Ti . s_rule_of ol True! ri (= itreviinduct) is a lemma about tol (= ikrev).
N

(B2 = xs and ys )

Y t2 : term € induction_term.
(ko2 = xs and ys )

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol)

A\
t2 is_nth_induction_term n

when B2 is xs (n =1) ?



primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol \\ first ko
] \ / 1]
lemma "itrev Xxs ys”= rev xs @ YysS

qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto AoﬁT \\\\

3 rl : rule. True k2
— first rt
3 rl : rule. ( r1 = tkreviinduct )

4 t1 : term. (k1 = ikrev )

d tol : term_occurrence € t1 : term. ( kol = itrev )
Ti . s_rule_of ol True! ri (= itreviinduct) is a lemma about tol (= ikrev).
N

(B2 = x5 and ys )

Y t2 : term € induction_term.
(ko2 = xs and ys )

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol) @ when k2 is xs (n = 1) *

A\
t2 is_nth_induction_term n



primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
_ "itrev (x#xs) ys = itrev xs (x#ys)"
tol {Lrs&\ S@%OMA 229
lemma "itrev Xs ys/é,rev Xs @ ys"

qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

34 rl : rule. True k2 second
rl

— first

3 rl : rule. ( r1 = tkreviinduct )

d ¢1 : term. (k1 = ibrev )
d tol : term_occurrence € tl1 : term. ( kol = itrev )

r1 Ws_rule_of {0l True' rl (= itreviinduct) is a lemma about kol (= itrev).
A\

(B2 = x5 and ys )

Y t2 : term € induction_term.
(ko2 = xs and ys )

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol) @ when k2 is xs (n = 1) *

A

t2 is_nth_induction_term n when 2 is ys (W = 2) ?



primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
tol ffi,rsf:\ S?-’%OMA tor
lemma "itrev Xs ys/é,rev Xs @ ys"

qood induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

34 rl : rule. True k2 second
rl

— first

3 rl : rule. ( r1 = tkreviinduct )

d ¢1 : term. (k1 = ibrev )
d tol : term_occurrence € tl1 : term. ( kol = itrev )

r1 Ws_rule_of {0l True' rl (= itreviinduct) is a lemma about kol (= itrev).
N

(2 = x5 and ys )

Y t2 : term € induction_term.
(ko2 = xs and ys )

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol) @ when k2 is xs (n = 1) ‘

AN
t2 is_nth_induction_term n when 2 is ys (1 = 2) ?‘



primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
tol {hﬁ&\\ second to
lemma "itrev xs ys/é/rev XS @ ys"

good induction -»  apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

34 rl : rule. True £2 second
rl

- first

3 rl : rule. ( r1 = tkreviinduct )

d ¢1 : term. (E1 = ikrev )
d tol : term_occurrence € t1 : term. ( kol = itrev )

Tﬁ_rule_of tol  True! ri (= itrevinduct) is a lemma about tol (= itrev).
A

(B2 :x!cw\dvjs/)

Y t2£% term € induction_term.
(ko2 = xs and ys )

- : term_occurrence € t2 : term.

. number.
th_argument_of ({02, n, tol) when k2 is xs (n = 1) ‘

when 2 is ys (1 = ) ?*

_nth_induction_term n



primrec rev :: "'a list = 'a list" where
"reV [] - []u I
"rev (x # xs) = rev xs @ [x]"

From ddean ww BIs Tded s 176t = 'a list" where

Heuristic torrec&i.v reburis
true to the good induction.,

lemma "itrev Xxs ys/= rev xs @ ys"

good induction -> apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

'S (x#ys)"

4 rl : rule. True k2 second
— first rt
3 rl : rule. ( r1 = tkreviinduct )
4 t1 : term. (k1 = ikrev )
d tol : term_occurrence € t1 : term. ( kol = itrev )

Tﬁ_rule_of tol  True! ri (= itrevinduct) is a lemma about tol (= itrev).
A

vV t2 term € induction_term. (k2 = ,}!Qmi ys Y
: term_occurrence € t2 : term. (ko2 = xs and ys )

. number.
th_argument_of ({02, n, tol) when k2 is xs (n = 1) ‘

_nth_induction_term n when 2 is ys (1 = 2) :’*



primrec rev :: "'a list = 'a list" where
"reV [] - []u I
"rev (x # xs) = rev xs @ [x]"

From ddean ww BIs Tded s 176t = 'a list" where

Heuristic torrmt&i.v reburis
true to the good induction.,

lemma "itrev Xxs ys/= rev xs @ ys"
annlulindircrty ve e r||1g-"-i+revlinduct")

'S (x#ys)"

good inductiov

e e T Suﬁfiﬁ 5 S! \

34 71 : rule. , viinduct )
4 t1 : term. (k1 = ikrev )
d tol : term_occurrence € t1 : term. ( kol = itrev )

Ti_rule_of tol  True! ri (= itreviinduct) is a lemma about tol (= iktrev).
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some cases. The variables that should be quantified are typically those that
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Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
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3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)
A
in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
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| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
In ner asse rtlon - are_same_number (recursion_on_nth, generalize_nth)
. in_some_definition
( = genel’a|IZGd_nth_argument_Of) (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <— key tO |OOk Up the deflnlng ClaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R e [ genearlize_nth, f_term | )<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)




primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"

"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer . !
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A

i n n er asse rt i O n - are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
( = (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <- ke\/ O |OOk Up the deflnlng C|aUSGS

is_root_in_a_location (root_occ)

AEI lhs_occ : term_occurrence. ) - name Of inner_assertion
oot root o reo-oxc [ genearlize_nth, f_term ] )<- arguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)




primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
In ner asse rtlon - are_same_number (recursion_on_nth, generalize_nth)
. in_some_definition
( = genel’a|IZGd_nth_argument_Of) (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <— key tO |OOk Up the deflnlng ClaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R e [ genearlize_nth, f_term | )<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)




primrec rev :: "'a list = 'a list" where
“rev [] = "
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs _(x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" .
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
Inner aSS ertlon - are_same_number (recursion_on_nth, generalize_nth)
A
- in_some_definition
( = generalized_nth_argument_of ) (Fterm, generalize_nth_argunent_of, [generalize_nth, f_term1)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_definition (

A [generalize_nth, f_term ].

3 root_occ : term_occurrence. f—term’ <_ key tO |OOk Up the defining CIaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R U (e [ genearlize_nth, f_term | )<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.

is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)




primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
In ner asse rtlon - are_same_number (recursion_on_nth, generalize_nth)
. in_some_definition
( = genel’a|IZGd_nth_argument_Of) (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <— key tO |OOk Up the deflnlng ClaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R e [ genearlize_nth, f_term | )<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)




primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

| "itrev (x # xs) ys:\ith#ys)" }LiFtEr

theorem "itrev Xs ys = rev xs @ ys"

apply(induct xs arbitrary: 'ys) } LiFtEr

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of )

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term ].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

xs is the first argument of itrev.
If we apply induction on xs
should we generalise ys, which is the second argument of itrev?

SelLFiE

outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[ genearlize_nth, f_term | )<- arguments from outer-to-inner




primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary: (¥s) } LiFtEr

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of )

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term ].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

xs is the first argument of itrev.
If we apply induction on xs
should we generalise ys, which is the second argument of itrev?

SelLFiE

outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[ genearlize_nth, f_term | )<- arguments from outer-to-inner




primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"it (x # xs) = it ( )" } LiFtEr
| "itrev (x # xs ys\lwx#ys }

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary: (ys) } LiFtEr

SeLFiE
outer.

inner

[ 2, itrev ]

inner assertion
(= generalized_nth_argument_of )

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term ].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

xs is the first argument of itrev.
If we apply induction on xs
should we generalise ys, which is the second argument of itrev?

SelLFiE

outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[ genearlize_nth, f_term | )<- arguments from outer-to-inner




primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"jtrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| - itrev xs " }

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: 'ys)

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of )

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term ].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)

A <<

3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

} LiFtEr

[ 2, itrev ]

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

SeLFiE outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A

- are_same_number (recursion_on_nth, generalize_nth)
A

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (
f term,

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

_ <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[ genearlize_nth, f_term | )<- arguments from outer-to-inner



primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"it (x # xs) = it ( )" } LiFtEr
| "itrev (x # xs ys\lwx#ys }

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: [ys)

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of )

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term ].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)

A <<

3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

} LiFtEr

[ 2, itrev ]

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

SeLFiE outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (
f term,

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

_ <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[ genearlize_nth, f_term | )<- arguments from outer-to-inner



primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"it (x # xs) = it ( )" } LiFtEr
| "itrev (x # xs ys\lwx#ys }

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: [ys)

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of )

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term ].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)

A <<

3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

} LiFtEr

[ 2, itrev ]

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

SeLFiE outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
true - are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (
f term,

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

_ <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[ genearlize_nth, f_term | )<- arguments from outer-to-inner
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The example theorem is taken from “Isabelle/HOL A Proof
Assistant for Higher-Order Logic” Tobias Nipkow, Lawrence C.
Paulson, Markus Wenzel page 36
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD
- Jbegin

o Jprimrec rev
6 "rev []
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‘n/fun itrev
12 "itrev [ ]

1st candidate is (induct
(* The score is 37 out
2nd candidate is (induct
(* The score is 36 out

|| "rev (x # xs)

"'a list =

"'a list =

[1"

Jimports "Smart Isabelle.Smart Isabelle"

'a list" where

rev xs @ [x]"

yS

| "itrev (x # xs) ys

svtheorem "itrev xs ys
« semantic_induct]]

Jvalue "rev [1l::nat, 2, 3]"

ySIl

'a list =

'a list" where

itrev xs (x#ys)"

rev xs @ ys"

3th candidate is (induct "
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XS

sivalue "itrev [1l::nat, 2, 3] []"

YS

Proof state Auto update Update
"xs" arbitrary:ys)
of 37. *)
1] XS 1] )

of 37. *)
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| "itrev (x # xs) ys

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

:vtheorem "itrev xs ys = rev xs @ ys"

« semantic_induct]]

1st candidate is (induct “xs" arbitrary:ys)

(* The score is 37 out of 37. *)
2nd candidate is (induct "xs")
(* The score is 36 out of 37. *)

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

3th candidate is (induct "“xs" "ys" rule:FMCAD.itrev.induct)
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = []"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

:vtheorem "itrev xs ys = rev xs @ ys"
 semantic_inductf] -

1st candidate is (induct “xs" arbitrary:ys)
(* The score is 37 out of 37. *)

2nd candidate is (induct "xs")
(* The score is 36 out of 37. *)

3th candidate is (induct "xs" "ys" rule:FMCAD.‘
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™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
- Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) = rev xs @ [x]"

File Browser Documentation 4 £
'S

qvalue "rev [1l::nat, 2, 3]"
quffun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

vtheorem "itrev xs ys = rev xs @ ys"
« semantic_inductll e

1st candidate is (induct “xs" arbitrary:ys)
(* The score is 37 out of 37. *)

2nd candidate is (induct "xs")
(* The score is 36 out of 37. *)

3th candidate is (induct "xs" "ys" rule:FMCAD.

B « Output Query Sledgehammer Symbols
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