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In the near future, ITP (Inductive theorem proving) will only be successful 
for very specialised domains for very restricted classes of conjectures.

we are convinced that … spectacular breakthroughs are unrealistic, in 
view of the enormous problems and the inherent difficulty of inductive 

theorem proving. (2005)
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DEMO
proof by induction in Isabelle/HOL

The example theorem is taken from “Isabelle/HOL A Proof 
Assistant for Higher-Order Logic” Tobias Nipkow, Lawrence C. 

Paulson, Markus Wenzel page 36

Proof by induction is important. 

Proof by induction is hard.

















functional induction  

using the induction rule “itrev.induct”
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Example Heuristic in LiFtEr (in Abstract Syntax)

LiFtEr heuristic:  ( proof goal * induction arguments ) -> bool
should be true if induction is good 
should be false if induction is bad
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On which variables to apply induction Variable generalisation

Names do not matter globally. Structures matter.

Bad news for automation.

Names do not matter globally at all. 
Syntactic structures matter a little. 
Semantics of constructs matter a lot.
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