Automation of proof by induction in
Isabelle/HOL using Domain-Specific

Languages

LiFtEr: Logical Feature Extractor

SeLFiE: Semantic Logical Feature Extractor

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

W

Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

Yutaka Nagashima, AITP, France, September 2020

Why proof by induction?

Division of Informatics, University of Edinburgh

Institute for Representation and Reasoning

The Automation of Proof by Mathematical Induction
by

Alan Bundy

Why proof by induction?

o-T
LY 4
ezttt

Division of Informatics, University of Edinburgh

Institute for Representation and Reasoning

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

The Automation of Proof by Mathematical Induction
by
Alan Bundy

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.j
http://creativecommons.org/licenses/by-sa/3.0/

Why proof by induction?

o-T
LY 4
ezttt

Division of Informatics, University of Edinburgh

Institute for Representation and Reasoning

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

The Automation of Proof by Mathematical Induction
by
Alan Bundy

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.j
http://creativecommons.org/licenses/by-sa/3.0/

arXiv:1309.6226v5 [cs.Al] 28 Jul 2014

http://wirth.bplaced.net/seki.html

Why proof by induction?

N 8
I~ A
German A
-' Research Center g'E\‘;VERSITAT
L | for Artificial ‘ JACOBS
k Intelligence UNIVERSITY

SAARLANDES

of formal methods for
ire and hardware. (1999)

N~

<

<

¥

N~

[32)

b Austintate

= ia.org/wiki/Alan Bundy#/media/File:Alan.Bundy.Image.j

& ://creativecommons.org/licenses/by-sa/3.0/ 3

Why proof by induction?

~N1lVe.

Artificial Intelligence 62 (1993) 185-253 185
Elsevier

ARTINT 974

1309.6226v5 [cs.AI] 28 Jul 2014

arXiv

Rippling: a heuristic for guiding
inductive proofs

Alan Bundy, Andrew Stevens*, Frank van Harmelen **,
Andrew Ireland and Alan Smaill

Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland, UK

Received December 1991
Revised July 1992

Abstract

Bundy, A., A. Stevens, F. van Harmelen, A. Ireland and A. Smaill, Rippling: a heuristic
for guiding inductive proofs, Artificial Intelligence 62 (1993) 185-253.

We describe rippling: a tactic for the heuristic control of the key part of proofs by
mathematical induction. This tactic significantly reduces the search for a proof of a
wide variety of inductive theorems. We first present a basic version of rippling, followed
by various extensions which are necessary to capture larger classes of inductive proofs.
Finally, we present a generalised form of rippling which embodies these extensions as
special cases. We prove that generalised rippling always terminates, and we discuss the
implementation of the tactic and its relation with other inductive proof search heuristics.

https://era.ed.ac.uk/bitstream/handle/1842/4748/BundyA_Rippling%20A%20Heuristic.pdf;sequence=1

formal methods for
‘and hardware. (1999)

Austintate

/wiki/Alan_Bundy#/media/File:Alan.Bundy.lmage.jpg
ativecommons.org/licenses/by-sa/3.0/

3

1309.6226v5 [cs.Al] 28 Jul 2014

arXiv

Why proof by induction?

Artificial]
Elsevier

ARTINT !

R

11

Al
Ar

Dey
Edi

Rec
Rey

Abs

Bur
for

mai
wid
by
Fin
spei
img

http://www.cse.chalmers.se/~jomoa/papers/isaplanner-v2-07.pdf

IsaPlanner 2: A Proof Planner for Isabelle

Lucas Dixon and Moa Johansson

School of Informatics, University of Edinburgh

Abstract. We describe version 2 of IsaPlanner, a proof planner for the
Isabelle proof assistant and present the central design decisions and their
motivations. The major advances are the support for a declarative pre-
sentation of the proof plans, reasoning with meta-variables to support
middle-out reasoning, new proof critics for lemma speculation and case
analysis, the ability to mix search strategies, and the inclusion of a
higher-order version of rippling that can use best-first search. The re-
sult is a more flexible and powerful proof planner for exploring proof
automation in Isabelle.

1 Introduction

Proof assistants, such as Isabelle [10], Coq [11] and HOL [7], provide a frame-
work for formalisation tasks such software verification and mechanised mathe-
matics. Typically, automation is developed by writing programs, called tactics,
that combine operations from a small trusted kernel. Although many forms of
proof automation are already available, developing new tactics and extending
existing ones can be difficult. Higher-level concepts, such as search space and
heuristic guidance, must be developed on top of the the logical kernel.

Proof Planning provides this kind of high-level machinery for encoding and
applying common patterns of reasoning [2]. When encoded in a proof planner

1309.6226v5 [cs.Al] 28 Jul 2014

arXiv

Why proof by induction?

Artificial]
Elsevier

ARTINT !

R

11

Al
Ar

Dey
Edi

Rec

Abs

Bur
for

mai
wid
by
Fin
spei
img

1405.3426v1 [cs.LO] 14 May 2014

arxXiv

Hipster: Integrating Theory Exploration in a
Proof Assistant

Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen

Department of Computer Science and Engineering, Chalmers University of Technology
{jomoa,danr,nicsma,koen}@chalmers.se

Abstract. This paper describes Hipster, a system integrating theory
exploration with the proof assistant Isabelle/HOL. Theory exploration
is a technique for automatically discovering new interesting lemmas in
a given theory development. Hipster can be used in two main modes.
The first is ezploratory mode, used for automatically generating basic
lemmas about a given set of datatypes and functions in a new theory
development. The second is proof mode, used in a particular proof attempt,
trying to discover the missing lemmas which would allow the current
goal to be proved. Hipster’s proof mode complements and boosts existing
proof automation techniques that rely on automatically selecting existing
lemmas, by inventing new lemmas that need induction to be proved. We
show example uses of both modes.

1 Introduction

The concept of theory exploration was first introduced by Buchberger [2]. He
argues that in contrast to automated theorem provers that focus on proving
one theorem at a time in isolation, mathematicians instead typically proceed
by exploring entire theories, by conjecturing and proving layers of increasingly
complex propositions. For each layer, appropriate proof methods are identified,
and previously proved lemmas may be used to prove later conjectures. When a
new concept (e.g. a new function) is introduced, we should prove a set of new
conjectures which, ideally, “completely” relates the new with the old, after which
other propositions in this layer can be proved easily by “routine” reasoning.
Mathematical software should be designed to support this workflow. This is
arguably the mode of use supported by many interactive proof assistants, such
as Theorema. [3] and Tsahelle [T71. However. thev leave the seneration of new

1309.6226v5 [cs.Al] 28 Jul 2014

arXiv

Why proof by induction?

Artificial]
Elsevier

ARTINT !

R

11

Al
Ar

Dey
Edi

Rec

Abs

Bur
for

mai
wid
by
Fin
spei
img

1405.3426v1 [cs.LO] 14 May 2014

arxXiv

1606.02941v9 [cs.LO] 2 Mar 2017

arXiv

https://doi.org/10.1007/978-3-319-63046-5_32

A Proof Strategy Language and Proof Script
Generation for Isabelle/HOL

Yutaka Nagashima and Ramana Kumar

Data61, CSIRO / UNSW

Abstract. We introduce a language, PSL, designed to capture high level
proof strategies in Isabelle/HOL. Given a strategy and a proof obligation,
PSL’s runtime system generates and combines various tactics to explore a
large search space with low memory usage. Upon success, PSL generates
an efficient proof script, which bypasses a large part of the proof search.
‘We also present PSL’s monadic interpreter to show that the underlying
idea of PSL is transferable to other ITPs.

1 Introduction

Currently, users of interactive theorem provers (ITPs) spend too much time iter-
atively interacting with their ITP to manually specialise and combine tactics as
depicted in Fig. [Ta] This time consuming process requires expertise in the ITP,
making ITPs more esoteric than they should be. The integration of powerful
automated theorem provers (ATPs) into ITPs ameliorates this problem signifi-
cantly; however, the exclusive reliance on general purpose ATPs makes it hard
to exploit users’ domain specific knowledge, leading to combinatorial explosion
even for conceptually straight-forward conjectures.

To address this problem, we introduce PSL, a programmable, extensible,
meta-tool based framework, to Isabelle/HOL [21]. We provide PSL (available on
GitHub [17]) as a language, so that its users can encode proof strategies, abstract

proof goal W(intermediate goal]
T
L

[[strategy]] {[context]tactic sub-toot

/—\ oo /A A o
. C 73
“ —"

proved theorem / efficient tactic proved theorem /
subgoals / message subgoals / message

(a) Standard proof attempt (b) Proof attempt with PSL

Proof by induction is hard!

Proof by induction is hard!

Available online at www.sciencedirect.com

scnencs(dnlnsc‘r" Electronic Notes in
Theoretical Computer
Science

www.elsevier.com/locate/entcs

Strategic Issues, Problems and Challenges in
Inductive Theorem Proving

Bernhard Gramlich?

Fakultat fir Informatik, TU Wien
Favoritenstr. 9 — E185/2, A-1040 Wien, Austria https://www.logic.at/staff/gramlich/

Abstract

(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and
theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques
and tools for automatically proving general (most often first-order) theorems. Nowadays, the field
of TP has reached a certain degree of maturity and powerful TP systems are widely available and
used. The situation with ITP is strikingly different, in the sense that proving inductive theorems
in an essentially automatic way still is a very challenging task, even for the most advanced existing
ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process
are of fundamental importance, in automated as well as in interactive or mixed settings. In the
paper we will analyze and discuss the most important strategic and proof search issues in ITP,
compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we
will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t.
automation, on different levels and from different points of views. Finally, based on this analysis
we will present some theses about the state of the art in the field, possible criteria for what could
be considered as substantial progress, and promising lines of research for the future, towards (more)
automated ITP.

Keywords: Inductive theorem proving, automated theorem proving, automation, interaction,
strategies, proof search control, challenges.

Proof by induction is hard!

Available online at www.sciencedirect.com

sclencs((i)nmscr« Electronic Notes in
Theoretical Computer

Science

www.elsevier.com/locate/entcs

Strategic Issues, Problems and Challenges in
Inductive Theorem Proving

Bernhard Gramlich?

In the near future, ITP (Inductive theorem proving) will only be successful
for very specialised domains for very restricted classes of conjectures.

and 00 OI' autoIna d -l"’v O er €Orenns. ""ala' ne eld
of TP has reached a certain degree of maturity and powerful TP systems are widely available and
used. The situation with ITP is strikingly different, in the sense that proving inductive theorems
in an essentially automatic way still is a very challenging task, even for the most advanced existing
ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process
are of fundamental importance, in automated as well as in interactive or mixed settings. In the
paper we will analyze and discuss the most important strategic and proof search issues in ITP,
compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we
will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t.
automation, on different levels and from different points of views. Finally, based on this analysis
we will present some theses about the state of the art in the field, possible criteria for what could
be considered as substantial progress, and promising lines of research for the future, towards (more)
automated ITP.

Keywords: Inductive theorem proving, automated theorem proving, automation, interaction,
strategies, proof search control, challenges.

Proof by induction is hard!

Available online at www.sciencedirect.com

sCIENCE(dDIRECT" Electronic Notes in
Theoretical Computer
Science

www.elsevier.com/locate/entcs

Strategic Issues, Problems and Challenges in
Inductive Theorem Proving

Bernhard Gramlich?

In the near future, ITP (Inductive theorem proving) will only be successful
for very specialised domains for very restricted classes of conjectures.

and 00 OI' autoIna d Yy Prov LI'V’VI mo O er ~order €Orenns. ""ala' S eld
of TP has reached a certain degree of maturity and powerful TP systems are widely available and
used. The situation with ITP is strikingly different, in the sense that proving inductive theorems

we are convinced that ... spectacular breakthroughs are unrealistic, in
view of the enormous problems and the inherent difficulty of inductive
theorem proving. (2005)

Keywords: Inductive theorem proving, automated theorem proving, automation, interaction,
strategies, proof search control, challenges.

Proof by induction is important.

Proof by induction is hard.

@ Proof by induction is important.

Proof by induction is hard.

Q Proof by induction is important.
Q Proof bv induction is hard,

HS

DEMO

proof by induction in Isabelle/HOL

The example theorem is taken from “Isabelle/HOL A Proof
Assistant for Higher-Order Logic” Tobias Nipkow, Lawrence C.
Paulson, Markus Wenzel page 36

@30 &9 ¢ X DR B@ T DBEE B & © |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD
Jimports "Smart Isabelle.Smart Isabelle"
- Jbeginfj

cprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1l::nat, 2, 3]"

qufun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

qutheorem "itrev xs ys rev xs @ ys"

W oopsS

Proof state Auto update Update Sear... v 100% ¢

B « Output Query Sledgehammer Symbols

3,6 (58/383) Matches line 22: end (isabelle,isabelle,UTF-8-Isabelle) U.. IZE¥512MB 12:19 PM

SaL03YL 1BIS PDPPIS 4 B

I@d@E & 9 X0 B NEBEE B & O |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

letheory FMCAD

c ' Jimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
g 4 "rev [] = [1"

£.0] "rev (x # xs) = rev xs @ [xI'}

Jvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

W oOopS

Proof state Auto update Update Sear... v 100% ¢

consts
rev :: "'a list = 'a list"

B « Output Query Sledgehammer Symbols
7,32 (154/383) (isabelleisabelle, UTF-8-Isabelle) U.. IEEJE 12MB 12:19 PM

SaL03YL 1BIS PDPPIS 4 B

@30 &9 ¢ X DR B@ T DBEE B & © |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1::nat, 2, 31}

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

cvtheorem "itrev xs ys rev xs @ ys"

W oOopS

II[3’ 2’ 1]II
"nat list"

B « Output Query Sledgehammer Symbols
9,27 (182/383)

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% <

U.. IEEEJE 2MB 12:19 PM

SaL03YL 1BIS PDPPIS 4 B

@30 & 9¢ X000 RB@ TDEE X & @ |€»

File Browser Documentation 4 £

|| "rev (x # xs)

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

f "rev [] = [1"
rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

on/fun itrev :: "'a list = 'a list = 'a list" where

¢ "itrev [] ys = ys"

o "itrev (x # xs) ys = itrev xs (x#ys)l]

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

W oOopS

Proof state Auto update Update Sear...

consts
itrev :: "'a list = 'a list = 'a list"
Found termination order: "(Ap. length (fst p)) <*mlex*> {}"

B « Output Query Sledgehammer Symbols

13,40 (299/383)

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% <

U.. BEREJERI2MB 12:19 PM

SaL03YL 1BIS PDPPIS 4 B

@30 &9 ¢ X DR B@ T DBEE B & © |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

2, 31 11I'R

rev xs @ ys"

s\value "itrev [1::nat

~-

cvtheorem "itrev xs ys

W oOopS

II[3’ 2’ 1]II
"nat list"

B « Output Query Sledgehammer Symbols
15,32 (332/383)

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% <

U.. BEEEVERPIMB 12:19 PM

SaL03YL 1BIS PDPPIS 4 B

I@d@E & 9 X0 B NEBEE B & O |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

letheory FMCAD

c ' Jimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = []"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

onfun itrev :: "'a list = 'a list = 'a list" where

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

-/theorem "itrev xs ys = rev xs @ ys'[}

W oOopS

Proof state Auto update Update Sear... v 100% ¢

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys

B « Output Query Sledgehammer Symbols
17,36 (369/383) (isabelleisabelle, UTF-8-Isabelle) U.. 82/512MB 12:19 PM

SaL03YL 1BIS PDPPIS 4 B

@30 & 9¢ X000 RB@ TDEE X & @ |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

letheory FMCAD

c ' Jimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = []"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"
apply|(linduct xs ys rule: itrev.induct)li

=
©

~

@ Proof state [Auto update Update Sear... ¥ 100% 9
goal (2 subgoals):
1. Ays. itrev [] ys = FMCAD.rev [] @ ys
2. AX Xs ys.
itrev xs (x # ys) = FMCAD.rev xs @ X # ys —
itrev (x # xs) ys FMCAD.rev (x # xs) @ ys

B « Output Query Sledgehammer Symbols
18,41 (410/423) Matches line 1: theory FMCAD (isabelleisabelle, UTF-8-Isabelle) U.. 81/512MB 12:20 PM

SaL03YL 1BIS PDPPIS 4 B

DEdE & 9¢ DB B@ T EREE B & © |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = [1"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

ofun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"
apply|(linduct xs ys rule: itrev.induct)li

=
©

Proof state Auto update

goal (2 subgoals):
1. Ays. itrev [] ys = FMCAD.rev [] @ ys
2. AX Xs ys.
itrev xs (x # ys) = FMCAD.rev xs @ X # ys —
itrev (x # xs) ys FMCAD.rev (x # xs) @ ys

B « Output Query Sledgehammer Symbols
18,41 (410/423) Matches line 1: theory FMCAD

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. [B1/512MB 12:20 PM

SaL03YL 1BIS PDPPIS 4 B

@30 &9 ¢ X DR B@ T DBEE B & © |€»

File Browser Documentation 4 £

|| "rev (x # xs)

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

f "rev [] = [1"
rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

onfun itrev :: "'a list = 'a list = 'a list" where

o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

apply(induct xs ys rule: itrev.induct)apply autofjdone

=
©

Proof state Auto update Update

proof (prove)
goal:
No subgoals!

B « Output Query Sledgehammer Symbols

18,51 (420/431) Matches line 1: theory FMCAD

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. l9/512MB 12:21 PM

SaL03YL 1BIS PDPPIS 4 B

I@d@E & 9 X0 B NEBEE B & O |€»

File Browser Documentation 4 £

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

onfun itrev :: "'a list = 'a list = 'a list" where

o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"

=
©

applyl(linduct xs arbitrary: ys)jj

Proof state Auto update Update

1. Ays. itrev [] ys = FMCAD.rev [] @ ys

2. N\a xs ys.
(Ays. itrev xs ys = FMCAD.rev xs @ ys) —
itrev (a # xs) ys = FMCAD.rev (a # xs) @ ys

B « Output Query Sledgehammer Symbols

18,33 (402/414)

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. lE9/512MB 12:21 PM

SaL03YL 1BIS PDPPIS 4 B

@30 & 9¢ X000 RB@ TDEE X & @ |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) = rev xs @ [x]"

File Browser Documentation 4 E
'S
SuOo3Y| 23BIS PDPRPIS 4 B

Jvalue "rev [1l::nat, 2, 31"

ofun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

svtheorem "itrev xs ys = rev xs @ ys"
applyl(linduct xs arbitrary: ys)jj

=
©

Proof state Auto update Update Sear... v 100% ¢

1. Ays. itrev [] ys = FMCAD.rev [] @ ys

2. N\a xs ys.
(Ays. itrev xs ys = FMCAD.rev xs @ ys) —
itrev (a # xs) ys = FMCAD.rev (a # xs) @ ys

B « Output Query Sledgehammer Symbols

18,33 (402/414) (isabelle,isabelle,UTF-8-Isabelle) U.. lE9/512MB 12:21 PM

(IE8d3E &9 XDB R@ NEEE B & @ |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

qvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

Tutheorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) apply autofjdone

=
©

Proof state
proof (prove)
goal:
No subgoals!

B « Output Query Sledgehammer Symbols
18,44 (413/423)

Auto update

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. l77/512MB 12:22 PM

SaL03YL 1BIS PDPPIS 4 B

I@d@E & 9 X0 B NEBEE B & O |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

/theorem "itrev xs ys = rev xs @ ys/'[}
18 try_hard

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys

B « Output Query Sledgehammer Symbols

17,36 (369/391) Matches line 19: oops

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. EH/512MB 2:54 PM

SaL03YL 1BIS PDPPIS 4 B

@30 &9 ¢ X DR B@ T DBEE B & © |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)
Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"
> Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) rev xs @ [x]"

File Browser Documentation 4 £
S

Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

/theorem "itrev xs ys = rev xs @ ys/'[}
18 t ry_ha rd

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys

B « Output Query Sledgehammer Symbols

17,36 (369/391) Matches line 19: oops

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. EH/512MB 2:54 PM

SaL03YL 1BIS PDPPIS 4 B

@30 & 9¢ X000 RB@ TDEE X & @ |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = [1"

4] "rev (x # xs) = rev xs @ [x]"

qvalue "rev [1l::nat, 2, 3]"

ofun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

oltheorem "itrev xs ys = rev xs @ ys'"B

« try_hard NVVOY\:‘)

Proof state Auto update Update Sear... v 100% ¢

proof (prove)
goal (1 subgoal):
1. itrev xs ys = FMCAD.rev xs @ ys

B « Output Query Sledgehammer Symbols

17,36 (369/391) Matches line 19: oops (isabelle,isabelle,UTF-8-Isabelle) U.. EEE/512MB 2:54 PM

SaL03YL 1BIS PDPPIS 4 B

@30 &9 ¢ X DR B@ T DBEE B & © |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfsbegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = [1"

4] "rev (x # xs) = rev xs @ [x]"

qvalue "rev [1l::nat, 2, 3]"

quffun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

qvtheorem "itrev xs ys = rev xs @ ys"

try_hardj] UVVOY\L‘)

=
©

Proof state Auto update Update = Sear... ¥ 100% C

subgoal
apply (induct xs arbltrary ys)
apply auto

done

B « Output Query Sledgehammer Symbols
18,11 (380/391) (isabelleisabelle, UTF-8-Isabelle) U.. L1/512MB 12:23 PM

SaL03YL 1BIS PDPPIS 4 B

T80 @ 9 XDE K@ OB BX & @ |«

File Browser Documentation 4 E

20}

| "itrev (x # xs) ys

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
- Jbegin

{primrec rev :: "'a list = 'a list" where
 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 31"

o "itrev [] ys = ys"
itrev xs (x#ys)"

svalue "itrev [1l::nat, 2, 3] []"

stheorem "itrev xs ys = rev Xxs @ ys
try_hard]j -

=
©

subgoal
apply (induct xs arbltrary ys)
apply auto

done

B « Output Query Sledgehammer Symbols

18,11 (380/391)

ofun itrev :: "'a list = 'a list = 'a list" where

Jsavene,UTF-8-Isabelle) | nmi

¥ 100% ¢

oU.. llL1/512MB 12:23 PM

SaL03YL 1BIS PDPPIS 4 B

T80 @ 9 XDE K@ OB BX & @ |«

File Browser Documentation 4 E

20}

| "itrev (x # xs) ys

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
- Jbegin

cfprimrec rev :: "'a list = 'a list" where

 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 31"

o "itrev [] ys = ys"
itrev xs (x#ys)"

svalue "itrev [1l::nat, 2, 3] []"

stheorem "itrev xs ys =
try_hard]j

=
©

subgoal
apply (induct xs arbltrary ys)
apply auto

done

B « Output Query Sledgehammer Symbols

18,11 (380/391)

©

Good for easy problews.

ofun itrev :: "'a list = 'a list = 'a list" where

¥ 100% ¢

vene,UTF-8-Isabelle) | nmroU.. lll1/512MB 12:23 PM

SU03YL MBI OPDPPIS 4 B

T@dE & $¢ KO0 8@ 8 B & © |¢»

=]

20}

File Browser Documentation 4 E

1
2
3
4
T 5
6
7
8
9

10

11

17

=
©

(%]
18,11 (

| "itrev (x # xs) ys

FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
> Jbegin
primrec rev :: "'a list = 'a list" where
"rev [] = []"
4| "rev (x # xs) = rev xs @ [x]"
value "rev [1l::nat, 2, 3]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ysS ys"
itrev xs (x#ys)"

value "itrev [1l::nat, 2, 3] []"

theorem "itrev xs ys = rev xs @ ys

try_hardj] 0{\(\ 2 -

subgoal ‘ ‘

apply (induct xs arbltrary ys)
apply auto

done

¥ Output Query Sledgehammer Symbols
380/391)

Good for easy problems,

Bad for hard problews.

wvene,UTF-8-Isabelle)

¥ 100% ¢

iroU.. llL1/512MB 12:23 PM

3Uo3yl 3BIS PDPRPIS 4 B

Good news for automation,

Bad news for automation,

Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Bad news for automation,

Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Bad news for automation,

Names do not matter gl.obatbj. Skructures mwatter,

Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Bad news for automation,

Names do not matter gl.obatbj. Skructures mwatter,

ALL theorems must be different.

Good news for automation,

(For most cases) we only have to pass the right arguments to the induction tactic,

Bad news for automation,

Names do not malkter gtobaLLv. Skructures makter.
ALL theorems must be different.

We should not have many similar theorems.

Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Neural network?
Bad hews for automation,

Names do not makker glcbatttj. Skructures malkber, ‘

ALL theorems must be different,

We should not have many similar theorems,.

Good news for automation,

(For most cases) we only have to pass the right arguments to the induction tactic,

Neural network?
Bad news for automation,

Names do not makker gtabattv. Skructures malkber, ‘

ALL theorems must be different,

We should not have many similar theorems,

lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto

Good news for automation.,

(For most cases) we c;mi.j have to pass the right arguments to the induction tactic,

Bad news for automation,

Names do not makker gLObO\LL‘j. Skructures malkber,

ALL theorems must be different,

We should not have many similar theorems,

lemma "itrev xs ys =
by(induct xs ys rule:

lemma "itrev [1,2]

lemma "itrev [1,2,3]

lemma "itrev [''a'',''b'"]
lemma “itrev [X,y,z]

~— e
et et e e

rev
rev
rev
rev

rev xs @ ys"
"itrev.induct") auto

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z]

S &

Neural network?

owne absbract representation

auto
auto
auto
auto

<= many conerele cases

Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Bad hews for automation,

Names do not makker glcbatttj. Skruckures maktter.
ALL theorems must be different,

We should not have many similar theorems,.

lemma "itrev xs ys =

lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z2]

~— e
et et e e

rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto

rev
rev
rev
rev

<~ abstraction using expressive Logic

[1,2] @ [1" by auto
[1,2,3] @ []" by auto
[Ilall'llbll] @ []II by auto
[x,y,z] @ [1" by auto

> ¢

Neural network?

<~ one absktract representation

<= many concrebe cases

Good news for automation,

(For most cases) we only have to pass the right arquments to the induction tactic,

Neural network?
Bad hews for automation,

Names do not makker gLobo\LLtj. Skruckures maktter.
ALL theorems must be different,

We should not have many similar theorems,.

Qemma "itrev xs ys = rev xs @ ys" <~ owne abstract represemio&iom
y(induct xs ys rule:"itrev.induct") auto

<~ abstraction using expressive Logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto)

lemma "itrev [''a'',''b''] [l =rev [''a'',"'b''] @ []1" by auto | <~ Maly cohcrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto

Many key challenges remain

Unsupervised Learning
CENTER FOR

Brains
Minds+
Machines

Memory and one-shot learning

Imagination-based Planni

March 20,2019

Transfer Learning The Power of

{ Self-Learning Systems
Language understanding

Demis Hassabis
DeepMind

V7 N?

Many key challenges remain

Unsupervised Learning
CENTER FOR

Brains
Minds+
Machines

Memory and one-shot learning

Imagination-based Planni

March 20,2019

Transfer Learning The Power of

{ Self-Learning Systems
Language understanding

Demis Hassabis
DeepMind

___logic?
A?

Many key challenges remain

v7?

Unsupervised Learning
CENTER FOR

Brains
Minds+
Machines

Memory and one-shot learning

Imagination-based Planni

March 20,2019

Transfer Learning The Power of

{ Self-Learning Systems
Language understanding

Demis Hassabis
DeepMind

Many key challenges remain

Unsupervised Learning
CENTER FOR

Brains
Minds+
Machines

Memory and one-shot learning

Imagination-based Planni

March 20,2019

Transfer Learning The Power of

{ Self-Learning Systems
Language understanding

Li FtEr: LOgicaI Feature Demis Hassabis
EXt raCt | on DeepMind

A

lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

‘Qemma "itrev xs ys =

y(induct xs ys rule:"itrev.induct") auto

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z]

rev xs @ ys"

~— e
et et e e

rev
rev
rev
rev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z]

™ ™ M

<~ one absktract representation

<= abstraction using expressive logic

by auto
by auto
by auto
by auto

<= many concrebe cases

@

lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

Grand Challenge: Abstract Abstraction

emma "itrev xs ys =
y(induct xs ys rule:"itrev.induct") auto

* ﬁ <= abstraction using expressive logic

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,2]

rev xs @ ys"

~— e
et et e e

rev
rev
rev
rev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,2z]

P ™ ® ©

[
[
[
[

]
]
]
]

<~ one absktract representation

by auto
by auto
by auto
by auto

<= many conerelbe cases

Grand Challenge: Abstract Abstraction

é%&emma "star r x y = star r y z = star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ exec is2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = My 2 @ ys” <~ ohe abstract representation
L by(induct xs ys rule:"itrev.induct") auto 4}

ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto)
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto

Grand Challenge: Abstract Abstraction

é?%emma star r x y = star ry z — star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ‘; exec is2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = rev xs @ ys” <~ ohe abskract representation
L by(induct xs ys rule:"itrev.induct") auto 4/

ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto)
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto

Grand Challenge: Abstract Abstraction

<~ pros: good at rigorous abstraction

é?&emma star r x y = star ry z = star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ‘; exec 1s2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qemlpa "itrev xs ys = rev xs @ ys” <~ ohe abskract representation
L by(induct xs ys rule:"itrev.induct") auto 4/

ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [l = rev [1,2,3] @ [1" by auto o
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto

Grand Challenge: Abstract Abstraction

]! []]: bOOI IiSt <= simple representation

<~ pros: good at rigorous abstraction

mma sarrxy:>starryz=>starrxz\
(1nduct10n rule: star.induct) (auto simp: step)

lemma "exec (isl @ is2) s stk = <~ small dataset abouk
‘% exec is2 s (exec isl s stk)" different domains
y(induct isl s stk rule:exec.induct) auto

Qemma "itrev xs ys = rev xs @ ys” <~ ohe abskract representation
y(induct xs ys rule:"itrev.induct") auto J

* ﬁ <= abstraction using expressive logic
lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto)
lemma "itrev [''a'',''b'']1 [l =rev [''a'',''b''] @ []1" by auto |<~ ™Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto

Grand Challenge: Abstract Abstraction

[[g]s []! []]: bool list - simple representation

<~ pros: good at rigorous abstraction

é%&emma star r x y = star ry z = star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ exec is2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = My 2 @ ys” <~ ohe abstract representation
L by(induct xs ys rule:"itrev.induct") auto 4}

* ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto)
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto

Grand Challenge: Abstract Abstraction

ﬁ <= pros: good at o\mbiguifz\j (heuristics)
[[], [], []i: bOOl IiSt <= simple representation
ﬁ <= pros: good at rigorous abstraction
é?%emma star r x y = star ry z — star r x zﬁi\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1s2) s stk = <~ small dataset about
ﬁ‘; exec is2 s (exec isl s stk)" different domains

y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = rev xs @ ys” <~ ohe abskract representation
L by(induct xs ys rule:"itrev.induct") auto 4/

ﬁ <= abstraction using expressive logic

lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto)
lemma "itrev [''a'',''b''] [] =rev [''a'’,"'b''] @ [1" by auto | <~ Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2z] @ []1" by auto

Grand Challenge: Abstract Abstraction

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains.
< iros: good at ambiguity (heuristics)

[[]! [], [] : bOOI IiSt <~ simpte rapresem&a&ion
ﬁ <- pros: good at rigorous abstraction
?ﬁemma sarrxy:>starryz=>starrxz"\
b

y(induction rule: star.induct)(auto simp: step)

lemma "exec (isl @ 1is2) s stk = <~ small dataset about
‘% exec 1is2 s (exec isl s stk)" different domains
y(induct isl s stk rule:exec.induct) auto
Qeml!la "itrev xs ys = My 2 @ ys" <~ ohe abstract representation
L by(induct xs ys rule:"itrev.induct") auto J
* ﬁ <~ abstraction using expressive logic
lemma "itrev [1,2] [1 = rev [1,2] @ []" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',"'b''] @ [1" by auto | <~ ™Many concrete cases
lemma “itrev [X,y,z] [1 = rev [x,y,2] @ []1" by auto

LiFtEr :

Logical

Feature
Extraction

Grand Challenge: Abstract Abstraction

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains.

]

<~ pros: good at ambiguity (heuristics)
i: bOOI IiSt <= simple representation

<~ pros: good at rigorous abstraction

A

te sarrxy=>starryz=>starrxz"\
by(induction rule: star.induct) (auto simp: step)

lemma "exec (isl @ 1s2) s stk =

exec 1s2 s (exec isl s stk)"

emma "itrev xs ys =
y(induct xs ys rule:"itrev.induct") auto J

by (induct isl s stk rule:exec.induct) auto

rev xs @ ys"

<~ small dataset about
different domains

<~ one abstract representation

lemma
lemma
lemma
lemma

"itrev
"itrev
"itrev
"itrev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,z]

~— e
et et e e

rev
rev
rev
rev

[1,2]

[1,2,3]
[Ilall'llbll]
[x,y,2]

ﬁ <~ abstraction using expressive logic

@ [1" by auto
@ [1" by auto
@ [1" by auto | <= ™Mahy concerebte cases
@ [1" by auto

Example Heuristic in LiFtEr (in Abstract Syntax)

d rl : rule. True
_>
d rl : rule.
4 ¢1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

d rl : rule. True
_>
d rl : rule.
4 ¢1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

d rl : rule. True
_>
d rl : rule.
4 ¢1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N\
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

d rl : rule. True
_>
d rl : rule.
4 ¢t1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N\
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

d rl : rule. True
_>
d rl : rule.
3 ¢t1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N\
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

metiaa&icm

JEI rl : rule. True
— ,

4 rl : rule.

J GINEerm. ... variable for terms
3 tol : term_occurrence tl1 : term
r1 is rule of tol g—“ variable for term occurrences

AN e con junction
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

variable for auxiliary lemmas

Example Heuristic in LiFtEr (in Abstract Syntax)

metito&icm

JEI rl : rule. True
— ,

4 rl : rule.

3¢l : term. 4 variable for terms

J tol : term_occurrence t1 : +term _
rl is rTule of tol é""‘“ variable for term occurrences

A e con junction
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
J @ S numbery - ‘ariable for natural numbers
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

variable for auxiliary lemmas

Example Heuristic in LiFtEr (in Abstract Syntax)

metica&icm

Jﬂ rl : rule. True
— o

4 rl : rule.

3 t1 : term. 4 variable for terms

d tol : term_occurrence tl1 : +term _
rl is rTule of tol é""‘“ variable for term occurrences

N e con junction
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

J @ S numbery - ‘ariable for natural numbers
is_nth_argument_of (t02, n, tol)

variable for auxiliary lemmas

uhiversal
quant ier A

t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

LmFLLtaLLom existential quom&hcier

JEI rl : rule. True

3 rl : rule.

3¢ CEXM. ... variable for terms

- tol : term_occurrence tl - term 4
rl is rTule of tol E""‘” variable for term occurrences

A | e con junction
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

J @ S numbery - ‘ariable for natural numbers
is_nth_argument_of (t02, n, tol)

variable for auxiliary lemmas

universal
quant ier A

t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

LiFtEr heuristic: (proof goal * induction arguments) -> bool

4 rl : rule. True
_>
4 rl : rule.
3 ¢t1 : term.
d(tol : term_occurrence € tl1 : term
rl is_rule_of tol
N\
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

Example Heuristic in LiFtEr (in Abstract Syntax)

LiFtEr heuristic: (proof goal * induction arguments) -> bool

should be true if induction is good
should be false if induction is bad

4 rl : rule. True
_>
4 rl : rule.
3 ¢t1 : term.
d(tol : term_occurrence € tl1 : term
rl is_rule_of tol
N\
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

primrec rev "'a list = 'a list" where

"rev [] = []1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done
4 rl : rule. True
_>

d rl : rule.
d ¢l : term.
d tol : term_occurrence € t1
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

: term.

primrec rev "'a list = 'a list" where

"rev [] = []1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done

aqood induction -»
9

4 rl : rule. True

_>
4 rl : rule.

d ¢l : term.
d tol : term_occurrence € t1
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

: term.

primrec rev "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done
d rl : rule. True
N rl
3 rl : rule. (r1 = ibrev.iinduct)

4 ¢t1 : term.
4 tol : term_occurrence € tl

rl is_rule_of tol

A\
Y t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

N
t2 is_nth_induction_term n

: term.

primrec rev "'a list =
"rev [] [1" |
"rev (x # Xxs) = rev xs @
fun itrev :: "'a list =
"itrev [] ys = ys" |
= itrev

"itrev (x#xs) ys

lemma "itrev Xxs ys

good induction -»

apply auto done

4 rl : rule. True
_>
3 rl : rule. (r1
d ¢l : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N

t2 is_nth_induction_term n

apply(induct xs ys rule:

‘a list" where

[x]"
‘a list = 'a list" where
XS (x#ys)"

rev xs @ ys"

"itrev.induct")

AN

rl

= ibreviinduct)

primrec rev "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done
4 rl : rule. True
N rl
d rl : rule. (r1 = ibrev.iinduct)

d t1 : term. (E1 = ibrev)
4 tol : term_occurrence € tl1 : term.

rl is_rule_of tol

A\
Y t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

primrec rev "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol
lemma "itrev xs ys = rev xs @ ys"
qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto done
d rl : rule. True
— rl
3 rl : rule. (vl = brevinduct)

d t1 : term. (E1 = ibrev)
d tol : term_occurrence € t1 : term. (kol = ikrev)

rl is_rule_of tol

A\
Y t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where

"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"
fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol
lemma "itrev xs ys = rev xs @ ys"
qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto done
d rl : rule. True
— rl
3 rl : rule. (r1 = ibrev.iinduct)

(E1 = ikrev)

d ¢l : term.
: term. (kol = itrev)

4 tol : term_occurrence € tl
rl is_rule_of tol

A\
Y t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where
"reV [] — []u I

"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
CO
lemma "itrev xs ys = rev xs @ ys"
good induction -» apply(induct xs ys rule:"itrev.induct")

apply auto done \\\\
4 rl : rule. True
— rl
J rl : rule. (r1 = ibreviinduct)
d t1 : term. (k1 = ibtrev)
d tol : term_occurrence € tl1 : term. (tol = ibrev)

PINISETULENOENIOI True' r1 (= itreviinduct) is a lemma about tol (= ikrev).
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

primrec rev "'a list = 'a list" where

"rev [] = [1"]
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
&
lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done \\\\

4 rl : rule. True
rl

_>
3 rl : rule. (vl = itrevinduct)
d t1 : term. (k1 = ibtrev)
d tol : term_occurrence € t1 : term. (kol = ibrev)
r‘_rule_of tol True! rl (= tkreviinduct) is a lemma aboub tol (= ikrev).
A

V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where

"rev [] = [1"]
"rev (x # xs) = rev xs @ [x]"

'a list = 'a list" where

fun itrev :: "'a list =
"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
O
lemma "itrev xs ys = rev xs @ ys"
qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto done “\\\
4 rl : rule. True
— rl
3 rl : rule. (vl = brevinduct)

(E1 = ikrev)

d ¢l : term.
: term. (kol = itrev)

4 tol : term_occurrence € tl
rlLAs_rule_of tol True! ri (= itreviinduct) is a lemma about tol (= iktrev).
AN

V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

primrec rev "'a list = 'a list" where

"rev [] = [1"]
"rev (x # xs) = rev xs @ [x]"

fun itrev "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
&
lemma "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

good induction -»
apply auto done X\\\

4 rl : rule. True
rl

_>
3 rl : rule. (vl = itrevinduct)
d t1 : term. (k1 = ibtrev)
d tol : term_occurrence € t1 : term. (kol = ibrev)
r&_rule_of tol True! r1 (= ibrev.induct) is a lemma about kol (= itrev).
N

V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where

"rev [] = [1"]
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
bl "itrev (x#xs) ys = itrev xs (x#ys)"
O

lemma "itrev xs ys = rev xs @ ys"

qood induction -» apply(induct_Xs ys rule:"itrev.induct")
apply auto Aone \\\\

3 rl : rule. True k2
rl

_>
4 rl : rule.

(r1 = tbreviinduct)
4 t1 : term. (k1 = ibrev)
d tol : term_occurrence € t1 : term. (kol = itrev)

rlLAs_rule_of tol True' ri (= itrev.iinduct) is a lemma about kol (= ikrev).
N

V t2 : term € induction_term. (B2 = xs and ys)
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
toR

lemma "itrev{xs ys/é,rev Xs @ ys"

qood induction -» apply(induct_Xs ys rule:"itrev.induct")
apply auto Aone \\\\

3 rl : rule. True k2
rl

tol

_>

d rl : rule. (r1 = itreviinduct)

4 t1 : term. (k1 = tbrev)
d tol : term_occurrence € t1 : term. (kol = itrev)

rlLAs_rule_of tol True' ri (= itrev.iinduct) is a lemma about kol (= ikrev).
N

(B2 = xs and ys)

YV t2 : term € induction_term.
(ko2 = xs and ys)

d to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (t02, n, tol)

A
t2 is_nth_induction_term n

_>

primrec rev :: "'a list =

"rev [] = []"]

"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list =
"itrev [] ys = ys" |

'a list" where

'a list = 'a list" where

"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys/é,rev Xs @ ys"
good induction -» apply(induct xs ys rule:"itrev.induct")

apply auto fdone

3 rl : rule. True k2

4 rl : rule.
4 ¢l : term.

N

rl

(r1 = ibrev.iinduct)
= ikrev)
d tol : term_occurrence € t1 : term. (kol = ibrev)
rlLAs_rule_of tol True! ri (= itreviinduct) is a lemma about tol (= iktrev).
N i

(t1

Y t2 : term € induction_term.

3 to2 :
dn :

A

term_occurrence € t2 : term.
number.
is_nth_argument_of (t02, n, tol)

t2 is_nth_induction_term n

(ko2

—
s

—
-

xs and ys)
xs and ys)

primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
toR

lemma "itrev xs ys/é/rev Xs @ ys"

qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto Aone \\\\

3 rl : rule. True k2
rl

tol

_>

d rl : rule. (r1 = itreviinduct)

4 t1 : term. (k1 = tbrev)
d tol : term_occurrence € t1 : term. (kol = itrev)

rlLAs_rule_of tol True' ri (= itrev.iinduct) is a lemma about kol (= ikrev).
N

(B2 = xs and ys)

Y t2 : term € induction_term.
(ko2 = xs and ys)

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol)

A\
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol \\ first N /&02
lemma "itrev Xxs ys“= rev xs @ ys"

qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto AoﬁT \\\\

3 rl : rule. True k2
— first rt
3 rl : rule. (r1 = tkreviinduct)

4 t1 : term. (1 = iktrev)

d tol : term_occurrence € t1 : term. (kol = itrev)
Ti . s_rule_of ol True! ri (= itreviinduct) is a lemma about tol (= ikrev).
N

(B2 = xs and ys)

Y t2 : term € induction_term.
(ko2 = xs and ys)

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol)

A\
t2 is_nth_induction_term n

when B2 is xs (n =1) ?

primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

tol \\ first ko
] \ / 1]
lemma "itrev Xxs ys”= rev xs @ YysS

qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto AoﬁT \\\\

3 rl : rule. True k2
— first rt
3 rl : rule. (r1 = tkreviinduct)

4 t1 : term. (k1 = ikrev)

d tol : term_occurrence € t1 : term. (kol = itrev)
Ti . s_rule_of ol True! ri (= itreviinduct) is a lemma about tol (= ikrev).
N

(B2 = x5 and ys)

Y t2 : term € induction_term.
(ko2 = xs and ys)

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol) @ when k2 is xs (n = 1) *

A\
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
_ "itrev (x#xs) ys = itrev xs (x#ys)"
tol {Lrs&\ S@%OMA 229
lemma "itrev Xs ys/é,rev Xs @ ys"

qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

34 rl : rule. True k2 second
rl

— first

3 rl : rule. (r1 = tkreviinduct)

d ¢1 : term. (k1 = ibrev)
d tol : term_occurrence € tl1 : term. (kol = itrev)

r1 Ws_rule_of {0l True' rl (= itreviinduct) is a lemma about kol (= itrev).
A\

(B2 = x5 and ys)

Y t2 : term € induction_term.
(ko2 = xs and ys)

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol) @ when k2 is xs (n = 1) *

A

t2 is_nth_induction_term n when 2 is ys (W = 2) ?

primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
tol ffi,rsf:\ S?-’%OMA tor
lemma "itrev Xs ys/é,rev Xs @ ys"

qood induction -» apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

34 rl : rule. True k2 second
rl

— first

3 rl : rule. (r1 = tkreviinduct)

d ¢1 : term. (k1 = ibrev)
d tol : term_occurrence € tl1 : term. (kol = itrev)

r1 Ws_rule_of {0l True' rl (= itreviinduct) is a lemma about kol (= itrev).
N

(2 = x5 and ys)

Y t2 : term € induction_term.
(ko2 = xs and ys)

4 to2 : term_occurrence € t2 : term.

d n : number.
is_nth_argument_of ({02, n, tol) @ when k2 is xs (n = 1) ‘

AN
t2 is_nth_induction_term n when 2 is ys (1 = 2) ?‘

primrec rev :: "'a list = 'a list" where

"rev [] = [1" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
tol {hﬁ&\\ second to
lemma "itrev xs ys/é/rev XS @ ys"

good induction -» apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

34 rl : rule. True £2 second
rl

- first

3 rl : rule. (r1 = tkreviinduct)

d ¢1 : term. (E1 = ikrev)
d tol : term_occurrence € t1 : term. (kol = itrev)

Tﬁ_rule_of tol True! ri (= itrevinduct) is a lemma about tol (= itrev).
A

(B2 :x!cw\dvjs/)

Y t2£% term € induction_term.
(ko2 = xs and ys)

- : term_occurrence € t2 : term.

. number.
th_argument_of ({02, n, tol) when k2 is xs (n = 1) ‘

when 2 is ys (1 =) ?*

_nth_induction_term n

primrec rev :: "'a list = 'a list" where
"reV [] - []u I
"rev (x # xs) = rev xs @ [x]"

From ddean ww BIs Tded s 176t = 'a list" where

Heuristic torrec&i.v reburis
true to the good induction.,

lemma "itrev Xxs ys/= rev xs @ ys"

good induction -> apply(induct xs ys rule:"itrev.induct")
apply auto Aon AN \\\\

'S (x#ys)"

4 rl : rule. True k2 second
— first rt
3 rl : rule. (r1 = tkreviinduct)
4 t1 : term. (k1 = ikrev)
d tol : term_occurrence € t1 : term. (kol = itrev)

Tﬁ_rule_of tol True! ri (= itrevinduct) is a lemma about tol (= itrev).
A

vV t2 term € induction_term. (k2 = ,}!Qmi ys Y
: term_occurrence € t2 : term. (ko2 = xs and ys)

. number.
th_argument_of ({02, n, tol) when k2 is xs (n = 1) ‘

_nth_induction_term n when 2 is ys (1 = 2) :’*

primrec rev :: "'a list = 'a list" where
"reV [] - []u I
"rev (x # xs) = rev xs @ [x]"

From ddean ww BIs Tded s 176t = 'a list" where

Heuristic torrmt&i.v reburis
true to the good induction.,

lemma "itrev Xxs ys/= rev xs @ ys"
annlulindircrty ve e r||1g-"-i+revlinduct")

'S (x#ys)"

good inductiov

e e T Suﬁfiﬁ 5 S! \

34 71 : rule. , viinduct)
4 t1 : term. (k1 = ikrev)
d tol : term_occurrence € t1 : term. (kol = itrev)

Ti_rule_of tol True! ri (= itreviinduct) is a lemma about tol (= iktrev).
N

vV t2 term € induction_term. (k2 = ,}!m\d ys Y
: term_occurrence € t2 : term. (ko2 = xs and ys)

. number.
th_argument_of ({02, n, tol) when k2 is xs (n = 1) ‘

_nth_induction_term n when 2 is ys (1 = 2) ?*

d rl : rule. True
_>
d rl : rule.
4 ¢1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

d rl : rule. True
_>
d rl : rule.
4 ¢1 : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

primrec rev :: "'a list = 'a list" where
"I"eV [] — []u I
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"
apply(induct ys xs rule: itrev.induct)
apply auto oops

d rl : rule. True
_>
d rl : rule.
d ¢l : term. Ak“ﬂy
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

the same LiFEEr heuristic

primrec rev :: "'a list = 'a list" where
"I"eV [] — []u I
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

same lemma -> Llemma "itrev Xs ys = rev xs @ ys"
apply(induct ys xs rule: itrev.induct)
apply auto oops

d rl : rule. True
_>
d rl : rule.
d ¢l : term. AE“ﬂy
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

the same LiFEEr heuristic

primrec rev :: "'a list = 'a list" where
"I"eV [] — []u I
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

same lemmoa -> 1emma "itrev xXxs ys = rev xs @ ys"
bod induction -» apply(induct’ ys xs rule: itrev.induct)
apply auto oops

d rl : rule. True
_>
d rl : rule.
d ¢l : term. AE”ﬂ#
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (t02, n, tol)
N
t2 is_nth_induction_term n

the same LiFEEr heuristic

primrec rev :: "'a list = 'a list" where
"reV [] — []u I
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

same lemnma -> lemma "itrev xs ys = rev xs @ ys"
bod induction -» apply(induct’ ys xs rule: itrev.induct)
apply auto oops

d rl : rule. True
_>
d rl : rule.
d ¢l : term. Ak#ﬂﬂ
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
N
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.
d n : number.
is_nth_argument_of (Z02, n, tol)
N
t2 is_nth_induction_term n

the same LiFEEr heuristic

primrec rev "'a list = 'a list" where

"rev [] = []" |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

same lenmma > lemma "itrev xs ys = rev xs @ ys"

bad induction -» apply(induc- rule: itrev.induct)
apply auto oops

4 rl : rule. True

_>
the same LiFtEr heuriskic

d rl : rule.
&

4 ¢l : term.
34 tol : term_occurrence € tl1 : term.

rl is_rule_of tol

N
YV t2 : term € induction_term.

4 to2 : term_occurrence € t2 : term.

primrec rev :: "'a list = 'a list" where
"reV [] — []u |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

Heuristic corre«r:&i.j reburins
false to the bad induction.

same lemama -> lemma "itrev xs ys = rev xs @ ys"

bad induction -» apply(induc- rule: itrev.induct)
apply auto oops

s (x#ys)"

d rl : rule. True
_>
d rl : rule.
d ¢l : term. K’
d tol : term_occurrence € t1 : term.

rl is_rule_of tol

N
YV t2 : term € induction_term.

4 to2 : term_occurrence € t2 : term.

the same LiFtEr heuriskic

primrec rev :: "'a list = 'a list" where
"reV [] — []u |
"rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

Heuristic aorrea&i.j reburins
false to the bad induction.

same lemma > lemma "itrev xs ys = rev xs @ ys"
v.induct)

s (x#ys)"

bad induction -

4 rl : rule. Tru . '
5 MELCRLSS,
' same LiFtEr heuristic
&

d rl : rule.
d ¢l : term.
d tol : term_occurrence € tl1 : term.
rl is_rule_of tol
A
V t2 : term € induction_term.
d to2 : term_occurrence € t2 : term.

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

) SpringerLink https://doi.org/10.1007/978-3-030-34175-6_14

I Al Asian Symposium on Programming Languages and Systems
i.. APLAS 2019: Programming Languages and Systems pp 266-287 | Cite as

LiFtEr: Language to Encode Induction Heuristics for
Isabelle/HOL

Authors Authors and affiliations
Yutaka Nagashima

Conference paper

)) 1 1 170
First Online: 18 November 2019

Citations Mentions Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11893)

Abstract

Proof assistants, such as Isabelle/HOL, offer tools to facilitate inductive theorem proving.
Isabelle experts know how to use these tools effectively; however, there is a little tool support
for transferring this expert knowledge to a wider user audience. To address this problem, we
present our domain-specific language, LiFtEr. LiFtEr allows experienced Isabelle users to
encode their induction heuristics in a style independent of any problem domain. LiFtEr’s

interpreter mechanically checks if a given application of induction tool matches the heuristics,

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

) SpringerLink https://doi.org/10.1007/978-3-030-34175-6_14

Programming Languages

Asian Symposium on Programming Languages and Systems
i.. APLAS 2019: Programming Languages and Systems pp 266-287 | Cite as

LiFtEr: Language to Encode Induction Heuristics for
Isabelle/HOL

Authors Authors and affiliations
Yutaka Nagashima

Conference paper

o . 1 170
First Online: 18 November 2019

Citations Mentions Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11893)

Abstract

Proof assistants, such as Isabelle/HOL, offer tools to facilitate inductive theorem proving.
Isabelle experts know how to use these tools effectively; however, there is a little tool support
for transferring this expert knowledge to a wider user audience. To address this problem, we
present our domain-specific language, Li FtEr. LiFtEr allows experienced Isabelle users to
encode their induction heuristics in a style independent of any problem domain. LiFtEr’s

interpreter mechanically checks if a given application of induction tool matches the heuristics,

w2520 hittps://doi.org/10.5281/zen0do.3960303
Smart Induction for Isabelle/HOL (Tool Paper)

Nagashima, Yutaka

Proof assistants offer tactics to facilitate inductive proofs; however, deciding what arguments to pass to these tactics still
requires human ingenuity. To automate this process, we present smart_induct for Isabelle/HOL. Given an inductive problem
in any problem domain, smart_induct lists promising arguments for the induct tactic without relying on a search. Our in-
depth evaluation demonstrate that smart_induct produces valuable recommendations across problem domains.

Currently, smart_induct is an interactive tool; however, we expect that smart_induct can be used to narrow the search
space of automatic inductive provers.

This is the pre-print of our paper of the same title accepted at Formal Methods in Computer-Aided Design 2020
(https://fmcad.forsyte.at/FMCAD20/). For more information, visit fmcad.org.

Preview v

¥ Page: 1 of10 — 4 Automatic Zoom=

@ Formal Methods in Computer-Aided Design 2020

Smart Induction for Isabelle/HOL (Tool Paper)

Yutaka Nagashima
CIIRC, Czech Technical University in Prague
University of Innsbruck
Email: yutaka.nagashima@cvut.cz

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction

) SpringerLink https://doi.org/10.1007/978-3-030-34175-6_14

Prm——s—"

Asian Symposium on Programming Languages and Systems
i.. APLAS 2019: Programming Languages and Systems pp 266-287 | Cite as

LiFtEr: Language to Encode Induction Heuristics for
Isabelle/HOL

Authors Authors and affiliations
Yutaka Nagashima

Conference paper

o . 1 170
First Online: 18 November 2019

Citations Mentions Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11893)

Abstract

Proof assistants, such as Isabelle/HOL, offer tools to facilitate inductive theorem proving.
Isabelle experts know how to use these tools effectively; however, there is a little tool support
for transferring this expert knowledge to a wider user audience. To address this problem, we
present our domain-specific language, LiFtEr. LiFtEr allows experienced Isabelle users to
encode their induction heuristics in a style independent of any problem domain. LiFtEr’s

interpreter mechanically checks if a given application of induction tool matches the heuristics,

w2520 hittps://doi.org/10.5281/zen0do.3960303
Smart Induction for Isabelle/HOL (Tool Paper)

Nagashima, Yutaka

Proof assistants offer tactics to facilitate inductive proofs; however, deciding what arguments to pass to these tactics still
requires human ingenuity. To automate this process, we present smart_induct for Isabelle/HOL. Given an inductive problem
in any problem domain, smart_induct lists promising arguments for the induct tactic without relying on a search. Our in-
depth evaluation demonstrate that smart_induct produces valuable recommendations across problem domains.

Currently, smart_induct is an interactive tool; however, we expect that smart_induct can be used to narrow the search
space of automatic inductive provers.

This is the pre-print of our paper of the same title accepted at Formal Methods in Computer-Aided Design 2020
(https://fmcad.forsyte.at/FMCAD20/). For more information, visit fmcad.org.

Preview v

¥ Page: 1 of10 — 4 Automatic Zoom=

@ Formal Methods in Computer-Aided Design 2020

Smart Induction for Isabelle/HOL (Tool Paper)

Yutaka Nagashima
CIIRC, Czech Technical University in Prague
University of Innsbruck
Email: yutaka.nagashima@cvut.cz

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction

) SpringerLink https://doi.org/10.1007/978-3-030-34175-6_14

Prm——s—"

Asian Symposium on Programming Languages and Systems
i.. APLAS 2019: Programming Languages and Systems pp 266-287 | Cite as

LiFtEr: Language to Encode Induction Heuristics for
Isabelle/HOL

Authors Authors and affiliations
Yutaka Nagashima

Conference paper

o . 1 170
First Online: 18 November 2019

Citations Mentions Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11893)

Abstract

Proof assistants, such as Isabelle/HOL, offer tools to facilitate inductive theorem proving.
Isabelle experts know how to use these tools effectively; however, there is a little tool support
for transferring this expert knowledge to a wider user audience. To address this problem, we
present our domain-specific language, LiFtEr. LiFtEr allows experienced Isabelle users to
encode their induction heuristics in a style independent of any problem domain. LiFtEr’s

interpreter mechanically checks if a given application of induction tool matches the heuristics,

Variable generalisation

wy2s, 200 hittps://doi.org/10.5281/zenodo.3960303
Smart Induction for Isabelle/HOL (Tool Paper)

Nagashima, Yutaka

Proof assistants offer tactics to facilitate inductive proofs; however, deciding what arguments to pass to these tactics still
requires human ingenuity. To automate this process, we present smart_induct for Isabelle/HOL. Given an inductive problem
in any problem domain, smart_induct lists promising arguments for the induct tactic without relying on a search. Our in-
depth evaluation demonstrate that smart_induct produces valuable recommendations across problem domains.

Currently, smart_induct is an interactive tool; however, we expect that smart_induct can be used to narrow the search
space of automatic inductive provers.

This is the pre-print of our paper of the same title accepted at Formal Methods in Computer-Aided Design 2020
(https://fmcad.forsyte.at/FMCAD20/). For more information, visit fmcad.org.

Preview v

¥ Page: 1 of10 — <4 Automatic Zoom+

@ Formal Methods in Computer-Aided Design 2020

Smart Induction for Isabelle/HOL (Tool Paper)

Yutaka Nagashima
CIIRC, Czech Technical University in Prague
University of Innsbruck
Email: yutaka.nagashima@cvut.cz

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction Variable generalisation

9\ SpringerLink https:/doi.org/10.1007/978-3-030-34175-6_14 m -

et Asian Symposium on Programming Languages and Systems .
I . APLAS 2019: Programming Languages and Systems pp 266-287 | Cite as July 25,2020 https://dOI.Ol’gﬂ0.5281/Zen0d0.3960303
W

LiFtEr: Language to Encode Induction Heuristics for Smart Induction for Isabelle/HOL (Too| Paper)
Isabelle/HOL

hrguments to pass to these tactics still

Authors . sabelle/HOL. Given an inductive problem
Bad news ‘FOT' O\UL&O MQELOV\. t: without relying on a search. Our in-
Yutaka Nagashima ns across problem domains.
can be used to narrow the search
Conference paper Names do not matter gtobaw} Sktructures matkker.

First Online: 18 November 2|

Computer-Aided Design 2020
Part of the Lecture Notes in d

Abstract
v an »

Proof assistants, such éhmmmmw @ Formal Methods in Computer-Aided Design 2020

Isabelle experts know how to use these tools effectively; however, there is a little tool support

for transferring this expert knowledge to a wider user audience. To address this problem, we Smart Induction for Isabelle/HOL (TOOI Paper)
present our domain-specific language, LiFtEr. LiFtEr allows experienced Isabelle users to Yutaka Nagashima

CIIRC, Czech Technical University in Prague
encode their induction heuristics in a style independent of any problem domain. Li FtEr’s University of Innsbruck

Email: yutaka.nagashima@cvut.cz
interpreter mechanically checks if a given application of induction tool matches the heuristics,

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction Variable generalisation

9\ SpringerLink https:/doi.org/10.1007/978-3-030-34175-6_14 m -

Asian Symposium on Programming Languages and Systems

ST T AT T A (e July 25,2020 - https:/doi.org/10.5281/zenodo.3960303

LiFtEr: Language to Encode Induction Heuristics for Smart Induction for Isabelle/HOL (Too| Paper)
Isabelle/HOL

Prm——s—"

hrguments to pass to these tactics still

Authors d . sabelle/HOL. Given an inductive problem
BO& news ‘FOT' O\M&O MQELOV\. ic without relying on a search. Our in-
Yutaka Nagashima ns across problem domains.
can be used to narrow the search
Conference paper Names do not matter global Structures matter,

First Online: 18 November 2|

Computer-Aided Design 2020
Part of the Lecture Notes in d

Names do not makker gtobattj ok all.

Syntactic structures matter a Little. y
Abstract .

Senantics of constructs wmatter a Lot, TR
Proof assistants, such a > " D Formal Methods in Computer-Aided Design 2020
Isabelle experts know how to use these tools effectively; however, there is a little tool support .
for transferring this expert knowledge to a wider user audience. To address this problem, we Smart Induction for Isabelle/HOL (TOOI Paper)
present our domain-specific language, LiFtEr. LiFtEr allows experienced Isabelle users to Yutaka Nagashima

CIIRC, Czech Technical University in Prague

encode their induction heuristics in a style independent of any problem domain. Li FtEr’s University of Innsbruck

Email: yutaka.nagashima@cvut.cz
interpreter mechanically checks if a given application of induction tool matches the heuristics,

primrec rev :: "'a list = 'a list" where
“rev [] [1"
| "rev (x # xs) rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys)

primrec rev :: "'a list = 'a list" where
"rev [] [1"
| "rev (x # xs) rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys)

alternative good proof by induction with generalisation

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

theorem "itrev xs ys rev xs @ ys"
apply(induct xs arbitrary: ys)

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

theorem "itrev xs ys rev xs @ ys"
apply(induct xs arbitrary: ys)

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys)

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: [ys)

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: [ys)

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys_= itrev xs (x#ys)"

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: [ys)

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys_= itrev xs (x#ys)"

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that

change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SelLFiE

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr } outer part for syntactic analysis

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic analySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr } outer part for syntactic analysis

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/v

SelLFiE

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

alternative good proof by induction with generalisation

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

inner part for semantic analysis

outer part for syntactic analysis

SeLFiE

outer

inner

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic analySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

SelLFiE

theorem "itrev xs ys = rev xs @ ys") . .
apply(induct xs arbitrary:) LiFtEr outer part for syntactic analysis
alternative good proof by induction with generalisation

SeLFiE proof
| —— . — . My gzz
Generalize goals for induction by universally quantifying all free vari- ner '

ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

SelLFiE

theorem "itrev xs ys = rev xs @ ys") . .
apply(induct xs arbitrary:) LiFtEr outer part for syntactic analysis
alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer, I ﬁ
Generalize goals for induction by universally quantifying all free vari- Ll ﬁ.ﬁ.ﬂ EEE

ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer -
g 0 0 0 0 g 0 inner g*z ﬁ
Generalize goals for induction by universally quantifying all free vari- ' EEnN
ables (except the induction variable itself!). (1)
This prevents trivial failures like the one above and does not affect the validity SeLFiE y
of the goal. However, this heuristic should not be applied blindly. It is not outer |
always required, and the additional quantifiers can complicate matters in —

some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| S itrev xs ")

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer -
g 0 0 g 0 g o inner g*z ﬁ
Generalize goals for induction by universally quantifying all free vari- ' EEnN
ables (except the induction variable itself!). (1)
This prevents trivial failures like the one above and does not affect the validity SeLFiE y
of the goal. However, this heuristic should not be applied blindly. It is not outer | inner
always required, and the additional quantifiers can complicate matters in —

some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| S itrev xs ")

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer -
g 0 0 g 0 g o inner g*z ﬁ
Generalize goals for induction by universally quantifying all free vari- ' EEN
ables (except the induction variable itself!). (1) \ 2
This prevents trivial failures like the one above and does not affect the validity SeLFiE y
of the goal. However, this heuristic should not be applied blindly. It is not outer | inner
always required, and the additional quantifiers can complicate matters in —

some cases. The variables that should be quantified are typically those that
change in recursive calls.

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| S itrev xs ")

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer, I ﬁ

Generalize goals for induction by universally quantifying all free vari- Ll ﬁ.ﬁ.ﬁ EEnN
ables (except the induction variable itself!). (1) \ 2

This prevents trivial failures like the one above and does not affect the validity SeLFiE y

of the goal. However, this heuristic should not be applied blindly. It is not outer | inner

always required, and the additional quantifiers can complicate matters in —

some cases. The variables that should be quantified are typically those that

change in recursive calls.

(3) LiFtEr J
“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| S itrev xs ")

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer I ﬁ
Generalize goals for induction by universally quantifying all free vari- Ll ﬁ.ﬁ.ﬁ EEN
ables (except the induction variable itself!). (1) \ 2 (4)
This prevents trivial failures like the one above and does not affect the validity SeLFiE
of the goal. However, this heuristic should not be applied blindly. It is not oute inner

always required, and the additional quantifiers can complicate matters in

m—
—
some cases. The variables that should be quantified are typically those that
change in recursive calls.
(3) LiFtEr J
“Isabelle/HOL A Proof Assistant for Higher-Order Logic”

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| S itrev xs ")

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary

outer I ﬁ
Generalize goals for induction by universally quantifying all free vari- Ll ﬁ.ﬁ.ﬁ EEE
(1) \ 2)

ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity SeLFiE
of the goal. However, this heuristic should not be applied blindly. It is not oute
always required, and the additional quantifiers can complicate matters in

inner

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

m—
—
some cases. The variables that should be quantified are typically those that
change in recursive calls.
(3) LiFtEr J
“Isabelle/HOL A Proof Assistant for Higher-Order Logic”

primrec rev :: "'a list = 'a list" where
"rev [] = LS
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs UEE")

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer I ﬁ
Generalize goals for induction by universally quantifying all free vari- Ll ﬁ.ﬁ.ﬁ EEE
ables (except the induction variable itself!). (1) \ 2 @ \0©6
This prevents trivial failures like the one above and does not affect the validity SeLFiE
of the goal. However, this heuristic should not be applied blindly. It is not oute inner

always required, and the additional quantifiers can complicate matters in

m—
—
some cases. The variables that should be quantified are typically those that
change in recursive calls.
() LiFtEr (6) J
“Isabelle/HOL A Proof Assistant for Higher-Order Logic”

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36
boolean

primrec rev :: "'a list = 'a list" where
"rev [] = LS
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs UEE")

SelLFiE

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer -
g 0 o g 0 g o inner g*z ﬁ
Generalize goals for induction by universally quantifying all free vari- ' EEnN
ables (except the induction variable itself!). (1) \ (2 @ \0
This prevents trivial failures like the one above and does not affect the validity SeLFiE y
of the goal. However, this heuristic should not be applied blindly. It is not outer | inner
always required, and the additional quantifiers can complicate matters in

some cases. The variables that should be quantified are typically those that
change in recursive calls.

LiFtEr

(6) J

3)
“Isabelle/HOL A Proof Assistant for Higher-Order Logic” (
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

primrec rev :: "'a list = 'a list" where
"rev [] = LS
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where inner part for semantic anaIySIS

"itrev [] ys = ys"
"itrev (x # xs) ys = itrev xs (x#ys)" !} LiFtEr
| .S itrev xs UEE")

SelLFiE

theorem "itrev Xs ys = rev xs @ ys"

apply(induct xs arbitrary:) } LiFtEr outer part for syntactic analysis

—

alternative good proof by induction with generalisation

SeLFiE proof definitions and auxiliary
outer -
g 0 o g 0 g o inner g*z ﬁ
Generalize goals for induction by universally quantifying all free vari- ' EEnN
ables (except the induction variable itself!). (1) \ (2) @ \0
This prevents trivial failures like the one above and does not affect the validity SeLFiE y
of the goal. However, this heuristic should not be applied blindly. It is not outer | inner
always required, and the additional quantifiers can complicate matters in

some cases. The variables that should be quantified are typically those that
change in recursive calls.

8) LiFtEr

(6) J

3)
“Isabelle/HOL A Proof Assistant for Higher-Order Logic” (
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

boolean

primrec rev :: "'a list = 'a list" where
“rev [] [1"
| "rev (x # xs) rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"

"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

SelLFiE

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

SeLFiE
outer.

inner

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/v

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer . !
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)
A
in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

primrec rev :: "'a list = 'a list" where
"rev [] = [1"

| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where _
itrev [] ys =Ys SeLFiE) ter assertion

"it # = it " } LiFtEr
| "itrev (x # xs) ys\lwx#ys) }

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev Xs ys = rev xs @ ys"

(induct xs : ys) } LiFtEr

SeLFiE :

3 f_ocel : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer A
inner 3 arb_occ € arb_term.

3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A

- are_same_number (recursion_on_nth, generalize_nth)
A

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

primrec rev :: "'a list = 'a list" where
"rev [] = |-
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/v

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer . !
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)
A
in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
_/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

is_defined_with_recursion_keyword [f_term]

A
SeLF|E 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (
f term,
generalized_nth_argument_of,
[genearlize_nth, f_term])

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
_/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

is_defined_with_recursion_keyword [f_term]

A
SeLF|E 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key o look up the defining clauses
generalized_nth_argument_of,

[genearlize_nth, f_term])

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
_/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

is_defined_with_recursion_keyword [f_term]

A
SeLF|E 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key o look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion
[genearlize_nth, f_term])

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
_/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

is_defined_with_recursion_keyword [f_term]

A
SeLF|E 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[genearlize_nth, f_term |)<- arguments from outer-to-inner

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
In ner asse rtlon - are_same_number (recursion_on_nth, generalize_nth)
. in_some_definition
(= genel’a|IZGd_nth_argument_Of) (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <— key tO |OOk Up the deflnlng ClaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R e [genearlize_nth, f_term |)<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"

"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer . !
inner 3 arb_occ e arb_term.
3 generalize_nth : number.

is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A

i n n er asse rt i O n - are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(= (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <- ke\/ O |OOk Up the deflnlng C|aUSGS

is_root_in_a_location (root_occ)

AEI lhs_occ : term_occurrence.) - name Of inner_assertion
oot root o reo-oxc [genearlize_nth, f_term])<- arguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
In ner asse rtlon - are_same_number (recursion_on_nth, generalize_nth)
. in_some_definition
(= genel’a|IZGd_nth_argument_Of) (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <— key tO |OOk Up the deflnlng ClaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R e [genearlize_nth, f_term |)<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

primrec rev :: "'a list = 'a list" where
“rev [] = "
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs _(x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" .
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
Inner aSS ertlon - are_same_number (recursion_on_nth, generalize_nth)
A
- in_some_definition
(= generalized_nth_argument_of) (Fterm, generalize_nth_argunent_of, [generalize_nth, f_term1)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_definition (

A [generalize_nth, f_term].

3 root_occ : term_occurrence. f—term’ <_ key tO |OOk Up the defining CIaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R U (e [genearlize_nth, f_term |)<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.

is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

primrec rev :: "'a list = 'a list" where
“rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where
"itrev [] ys = ys"
| "itrev (x # xs)|ys = itrev xs (x#ys)" } LiFtEr
\/V

SeLFiE outer assertion

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]

theorem "itrev xs ys = rev xs @ ys" _
apply(induct xs arbitrary: (ys) LiFtEr

A

SeLFiE 3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
outer, A
inner 3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
In ner asse rtlon - are_same_number (recursion_on_nth, generalize_nth)
. in_some_definition
(= genel’a|IZGd_nth_argument_Of) (f_term, generalize_nth_argument_of, [generalize_nth, f_terml)

/\

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of := in_some_deﬁn|t|0n (

A [generalize_nth, f_term 1.

3 root_occ : term_occurrence. f—term’ <— key tO |OOk Up the deflnlng ClaUSGS

is_root_in_a_location (root_occ)

A generalized_nth_argument_of, 4- name of inner_assertion

3 lhs_occ : term_occurrence.

R e [genearlize_nth, f_term |)<- grguments from outer-to-inner

3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
- are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

| "itrev (x # xs) ys:\ith#ys)" }LiFtEr

theorem "itrev Xs ys = rev xs @ ys"

apply(induct xs arbitrary: 'ys) } LiFtEr

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of)

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

xs is the first argument of itrev.
If we apply induction on xs
should we generalise ys, which is the second argument of itrev?

SelLFiE

outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[genearlize_nth, f_term |)<- arguments from outer-to-inner

primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"itrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| .S itrev xs " }

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary: (¥s) } LiFtEr

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of)

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

xs is the first argument of itrev.
If we apply induction on xs
should we generalise ys, which is the second argument of itrev?

SelLFiE

outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[genearlize_nth, f_term |)<- arguments from outer-to-inner

primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"it (x # xs) = it ()" } LiFtEr
| "itrev (x # xs ys\lwx#ys }

theorem "itrev xs ys = rev xs @ ys"

apply(induct xs arbitrary: (ys) } LiFtEr

SeLFiE
outer.

inner

[2, itrev]

inner assertion
(= generalized_nth_argument_of)

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)
A
3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

xs is the first argument of itrev.
If we apply induction on xs
should we generalise ys, which is the second argument of itrev?

SelLFiE

outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (

f_term, <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[genearlize_nth, f_term |)<- arguments from outer-to-inner

primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"jtrev (x # xs) ys = itrev xs (x#ys)" }LiFtEr
| - itrev xs " }

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: 'ys)

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of)

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)

A <<

3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

} LiFtEr

[2, itrev]

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

SeLFiE outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A

- are_same_number (recursion_on_nth, generalize_nth)
A

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (
f term,

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

_ <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[genearlize_nth, f_term |)<- arguments from outer-to-inner

primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"it (x # xs) = it ()" } LiFtEr
| "itrev (x # xs ys\lwx#ys }

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: [ys)

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of)

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)

A <<

3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

} LiFtEr

[2, itrev]

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

SeLFiE outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
- are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (
f term,

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

_ <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[genearlize_nth, f_term |)<- arguments from outer-to-inner

primrec rev :: "'a list = 'a list" where
"rev [] = [1"
| "rev (x # xs) = rev xs @ [x]"

fun itrev :: "'a list = 'a list = 'a list" where

"itrev [] ys = ys"

"it (x # xs) = it ()" } LiFtEr
| "itrev (x # xs ys\lwx#ys }

theorem "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: [ys)

SeLFiE
outer.

inner

inner assertion
(= generalized_nth_argument_of)

Program 7 Semantic analysis of more reliable generalization heuristic in SeLFiE

generalize_nth_argument_of :=
A [generalize_nth, f_term].
3 root_occ : term_occurrence.
is_root_in_a_location (root_occ)
A
3 lhs_occ : term_occurrence.
is_lhs_of_root [lhs_occ, root_occ]
A
3 nth_param_on_lhs : term_occurrence.
is_n+1th_child_of (nth_param_on_lhs, mth_arg_of_f_occ_has_arb, lhs_occ)
A
3 nth_param_on_rhs : term_occurrence.
— are_of_same_term (nth_param_on_rhs, nth_param_on_lhs)

A <<

3 f_occ_on_rhs : term_occurrence € f_term : term.
is_nth_argument_of (nth_param_on_rhs, generalize_nth, f_occ_on_rhs)

} LiFtEr

[2, itrev]

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

SeLFiE outer assertion V

Program 6 More reliable generalization heuristic in SeLFiE

generalize_only_what_should_be_generalized :=
V arb_term : term € arbitrary_term.
3 ind_term : term € induction_term.
3 ind_occ € ind_term.
3 f_term : term.
is_defined_with_recursion_keyword [f_term]
A
3 f_occl : term_occurrence € f_term : term.
3 recursion_on_nth : number.
is_or_below_nth_argument_of (ind_occ, recursion_on_nth, f_occl)
A
3 arb_occ € arb_term.
3 generalize_nth : number.
is_or_below_nth_argument_of (arb_occ, generalize_nth, f_occ)
A
true - are_same_number (recursion_on_nth, generalize_nth)

in_some_definition
(f_term, generalize_nth_argument_of, [generalize_nth, f_terml)
/\

in_some_definition (
f term,

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

_ <- key to look up the defining clauses
generalized_nth_argument_of, 4- name of inner_assertion

[genearlize_nth, f_term |)<- arguments from outer-to-inner

DEMO

semantic_induct

The example theorem is taken from “Isabelle/HOL A Proof
Assistant for Higher-Order Logic” Tobias Nipkow, Lawrence C.
Paulson, Markus Wenzel page 36

NM@dE: &9 ¢ XD @ T EEE B & @:|€e»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD
- Jbegin

o Jprimrec rev
6 "rev []

File Browser Documentation 4 £
S

‘n/fun itrev
12 "itrev []

1st candidate is (induct
(* The score is 37 out
2nd candidate is (induct
(* The score is 36 out

|| "rev (x # xs)

"'a list =

"'a list =

[1"

Jimports "Smart Isabelle.Smart Isabelle"

'a list" where

rev xs @ [x]"

yS

| "itrev (x # xs) ys

svtheorem "itrev xs ys
« semantic_induct]]

Jvalue "rev [1l::nat, 2, 3]"

ySIl

'a list =

'a list" where

itrev xs (x#ys)"

rev xs @ ys"

3th candidate is (induct "

B « Output Query Sledgehammer Symbols

18,18 (387/398)

XS

sivalue "itrev [1l::nat, 2, 3] []"

YS

Proof state Auto update Update
"xs" arbitrary:ys)
of 37. *)
1] XS 1])

of 37. *)

rule:FMCAD.itrev.induct)

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

©

¥ 100% ¢

U.. EEREFERI2MB 12:22 PM

SaL03YL 1BIS PDPPIS 4 B

@30 & 9¢ X000 RB@ TDEE X & @ |€»

File Browser Documentation 4 £

| "itrev (x # xs) ys

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

Tltheory FMCAD

Jimports "Smart Isabelle.Smart Isabelle"

- Jbegin

cJprimrec rev :: "'a list = 'a list" where

 "rev [] = []"

4| "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

o "itrev [] ys = ys"
itrev xs (x#ys)"

sivalue "itrev [1l::nat, 2, 3] []"

:vtheorem "itrev xs ys = rev xs @ ys"

« semantic_induct]]

1st candidate is (induct “xs" arbitrary:ys)

(* The score is 37 out of 37. *)
2nd candidate is (induct "xs")
(* The score is 36 out of 37. *)

onfun itrev :: "'a list = 'a list = 'a list" where

Proof state

Auto update

Update

3th candidate is (induct "“xs" "ys" rule:FMCAD.itrev.induct)

B « Output Query Sledgehammer Symbols

18,18 (387/398)

Sear...

(isabelle,isabelle,UTF-8-Isabelle)

¥ 100% ¢

U.. EEREFERI2MB 12:22 PM

SaL03YL 1BIS PDPPIS 4 B

(IE8d3E &9 XDB R@ NEEE B & @ |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

®+4theory FMCAD

' jJimports "Smart Isabelle.Smart Isabelle"
gfabegin

;—sprimrec rev :: "'a list = 'a list" where
§d "rev [] = []"

4] "rev (x # xs) = rev xs @ [x]"

Jvalue "rev [1l::nat, 2, 3]"

qu/fun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"
| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

:vtheorem "itrev xs ys = rev xs @ ys"
 semantic_inductf] -

1st candidate is (induct “xs" arbitrary:ys)
(* The score is 37 out of 37. *)

2nd candidate is (induct "xs")
(* The score is 36 out of 37. *)

3th candidate is (induct "xs" "ys" rule:FMCAD.‘
B « Output Query Sledgehammer Symbols

18,18 (387/398) Clsavcne,UTF-8-Isabelle) U.. EEREFERI2MB 12:22 PM

SaL03YL 1BIS PDPPIS 4 B

DEdE & 9¢ DB B@ T EREE B & © |€»

™ FMCAD.thy (~/Workplace/PSL_Perform/PSL/Example/)

(theory FMCAD

jJimports "Smart Isabelle.Smart Isabelle"
- Jbegin

cJprimrec rev :: "'a list = 'a list" where
. "reV [] = []u
4| "rev (x # xs) = rev xs @ [x]"

File Browser Documentation 4 £
'S

qvalue "rev [1l::nat, 2, 3]"
quffun itrev :: "'a list = 'a list = 'a list" where
o "itrev [] ys = ys"

| "itrev (x # xs) ys = itrev xs (x#ys)"

svalue "itrev [1::nat, 2, 3] []"

vtheorem "itrev xs ys = rev xs @ ys"
« semantic_inductll e

1st candidate is (induct “xs" arbitrary:ys)
(* The score is 37 out of 37. *)

2nd candidate is (induct "xs")
(* The score is 36 out of 37. *)

3th candidate is (induct "xs" "ys" rule:FMCAD.

B « Output Query Sledgehammer Symbols
18,18 (387/398)

uuuuuuuuu

UTF-8-Isabelle)

U.. EEREFERI2MB 12:22 PM

SaL03YL 1BIS PDPPIS 4 B

Build semantic_induct using SeLFiE

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

c—rﬁc/—f/c—ﬁﬁh\c—)\ﬁc—)

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

(—)‘ﬁc/—i/c—ﬁﬁh\cﬁ\ﬁ(—)

C

Step 2: flltermg out unpromlsmg tactlcs

()()‘()()L()()()

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

c—)‘ﬁc/—i/c—iﬁh\cﬁ\ﬁ(—)

C Step 2: flltermg out unpromlsmg tactlcs

()\(.)*()()‘()()()

Step 3: rank tactics using SeLFiE heuristics

O G

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

mﬁc/—i/c—iﬁh\cﬁ\ﬁ(—)

C Step2 flltermg out unpromlsmg tactlcs
v v
()\(,) ()() ()()()
C Step 3: rank tactics using SeLFiE heuristics)

‘ v ' _s/ v
20 ?04‘ 18 18 18 18 17

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

(—)‘ﬁc/—i/c—ﬁﬁh\cﬁ\ﬁ(—)

C Step 2: flltermg out unpromlsmg tactlcs
v v
()\(,) ()() ()()()

C Step 3: rank tactics using SeLFiE heuristics)

v~ ! 4 (_5/

20 20 18 18 18 18 17

/1 I N\ \ NN

C Step 4: construct generalisation variables)

FEER | \ L 2 NN

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

c—)‘ﬁc/—fc—ﬁﬁh\cﬁ\ﬁ(—)

C Step2 flltermg out unpromlsmg tactlcs
v v
()\(,) ()() ()()()
C Step 3: rank tactics using SeLFiE heuristics
+ v / _>A/ v
20 ?04‘ 18 18 18

/| | L\ \

Step 4: construct generalisation varlables

C
(zo)(zo)(zo)(m)(m)hh\t—)\ﬁ

C Step 5: filter out unpromising tactics

A \ v v \ \ v v

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

c—)‘ﬁc/—fc—ﬁﬁh\cﬁ\ﬁ(—)

C Step 2: flltermg out unpromlsmg tactlcs

D ' O ' OOC)

C Step 3: rank tactics using SeLFiE heuristics
VO~ ! 7
20 20 18 18 18

/| | L\ \

Step 4: construct generalisation varlables

C
(20)(20)(20)(18)(18)hht) (e)

C Step 5: fllter out unpromlsmg tactlcs
v v v
(zg) (w\) (18\) (,w)
C Step 6: rank tactics using SeLFiE heuristics for generalisation

N /N

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

c—)‘ﬁc/—fc—ﬁﬁh\cﬁ\ﬁc—)

C Step 2: flltermg out unpromlsmg tactlcs

()\(.)*()()‘()()()

C Step 3: rank tactics using SeLFiE heuristics
4 K, v /
20 20 18 18 18
/1 I L\ \

Step 4: construct generalisation varlables

C
(zo)(zo)(zo)(w)hhh\ﬁﬁ

C Step 5: fllter out unpromlsmg tactlcs
v v v
(zg) (w\) (w\) (,w)
C Step 6: rank tactics using SeLFiE heuristics for generalisation

N ¥ X
(22) (26) (C2a)(22)(2)

Build semantic_induct using SeLFiE

Step 1: smart construction of induction terms and induction rule

c—)‘ﬁc/—fc—ﬁﬁh\cﬁ\ﬁ(—)

C Step 2: flltermg out unpromlsmg tactlcs

D ' O ' OOC)

C Step 3: rank tactics using SeLFiE heuristics
VO~ ! 7
20 20 18 18 18

/| | L\ \

Step 4: construct generalisation varlables

C
(20)(20)(20)(18)(18)hht) (e)

C Step 5: fllter out unpromlsmg tactlcs
v v v
(zg) (w\) (18\) (,w)
C Step 6: rank tactics using SeLFiE heuristics for generalisation

B A zz’/\

recommendation using SeLFiE

oot 81.831.50m
6 . 766 , 77.877.877 8T . 774 §79.5
52.8
il D

Binomial overall

100

(=]

coincidence rate [%]
Ul
[e=]

DI]top 1l0top ZDDtop 3|ltop5

(b) Coincidence rates of semantic_induct for each theory file (part 1).

5

g 100 | 88 988.9]
= 75 75 75 75 80 80 80 79.5

£ 60 59.667-371 60.209-37%7

§ i DDDI DDDI i 5DDI [4|] DDI
3

T

g

o

© Challenge DFS Goodstein Boolean Hybrid

Ootop 100top 20 0top 3WWtop 5

(d) Coincidence rates of semantic_induct for each theory file (part 2).

recommendation using SelLFiE recommendation using LiFtEr

100
18.2
9.1 9.19.1
I:II:II:I-

100 oI00 1 81.881. 8
6 . 766 ; 77.877.877.8 . 774 &79.5
52.8
- 25. 6 18.2 D
I

B1nom1a1 NN overall NN
DDtop 1l0top ZDDtop 3l Btop 5

(=]

coincidence rate [%]
Ul
[e=]

(b) Coincidence rates of semantic_induct for each theory file (part 1).

X |

2 100 80 80 80 889889 79.5
75 75 75 75

= 60 59.667-371 60 209.372.7

- DDDI DDDI i 5DDI i 4D I

<

T,

(=

5 ‘

© Challenge DFS Goodstein Boolean Hybrid

Uotop 100top 20l 0top 3WMtop 5

(d) Coincidence rates of semantic_induct for each theory file (part 2).

coincidence rate [%]

coincidence rate [%]

100

ul
[}

(=]

100 -

a1
(e

(=]

recommendation using SeLFiE

oo 81.831.5mm
66 766 7 77.877.877. 8 67. 774 879.5
52.8
&l D
Binomial overall

DI]top 1l0top ZDDtop 3|ltop5

(b) Coincidence rates of semantic_induct for each theory file (part 1).

88 988.9 .
75 75 75 75 80 80 80 79.5
60 59.667-371 60.209-37%7
DDDI DDDI i 5DDI [4|] DDI
Challenge Goodstein Boolean Hybrid

Ootop 100top 20 0top 3WWtop 5

(d) Coincidence rates of semantic_induct for each theory file (part 2).

Invocations of the induct tactic [%]

recommendation using LiFtEr

18.2
9.1 9.1 9.1
]|
I
NN
100 100
100 | —
81.8
70]
50

8.3 |:|
o | = |

Challenge DFS Goodstein NN

‘ 0 0rule [Darbitrary l

PST

Future work

SelLFiE

Future work

) SpringerLink https://doi.org/10.1007/978-3-319-96812-4_19

SelLFiE +co

International Conference on Computer ic:
CICM 2018: Intelligent Computer Mathematics pp 225-231 | Cite as

Goal-Oriented Conjecturing for Isabelle/HOL

Authors Authors and affiliations

Yutaka Nagashima, jylian Parsert

Conference paper

- - 3 359
First Online: 18 July 2018

Citations Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11006)

njecturing

background context, PGT attempts to generate conjectures from the original goal by

iiven a proof goal and its

transforming the original proof goal. These conjectures should be weak enough to be provable
by automation but sufficiently strong to identify and prove the original goal. By incorporating
PGT into the pre-existing PsL framework, we exploit Isabelle’s strong automation to identify

and prove such conjectures.

Keywords

Proof Goal Original Goal Strong Automation QuickCheck Isabelle Theory File

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be

updated as the learning algorithm improves.

Y. Nagashima—Supported by the European Regional Development Fund under the
project AI & Reasoning (reg. n0.CZ.02.1.01/0.0/0.0/15_003/0000466)

Future work

) SpringerLink https://doi.org/10.1007/978-3-319-96812-4_19

SeLFiE +conjecturing

International Conference on
CICM 2018: Intelligent Computer Mathematics pp 225-231 | Cite as

Goal-Oriented Conjecturing for Isabelle/HOL

Computer ic

Authors Authors and affiliations

Yutaka Nagashima, jylian Parsert

Conference paper

- - B3 359
First Online: 18 July 2018

Citations Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11006)

iiven a proof goal ai
background context, PGT attempts to generate conjectures from the original goal b
transforming the original proof goal. These conjectures should be weak enough to be provable
by automation but sufficiently strong to identify and prove the original goal. By incorporating
PGT into the pre-existing PsL framework, we exploit Isabelle’s strong automation to identify

and prove such conjectures.

Keywords

Proof Goal Original Goal Strong Automation QuickCheck Isabelle Theory File

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be

updated as the learning algorithm improves.

Y. Nagashima—Supported by the European Regional Development Fund under the
project AI & Reasoning (reg. n0.CZ.02.1.01/0.0/0.0/15_003/0000466)

@ Springer Link

https://doi.org/10.1007/978-3-319-63046-5_32

International Conference on Automated Deduction
CADE 2017: Automated Deduction - CADE 26 pp 528-545 | Cite as

A Proof Strategy Language and Proof Script Generation
for Isabelle/HOL

Authors Authors and affiliations

Yutaka Nagashima, Ramana Kumar &1

Conference paper

proof search

Abstract

We introduce a language, PSL, designed to capture high level proof strategies in Isabelle/HOL.
Given a strategy and a proof obligation, PSL’s runtime system generates and combines various
tactics to explore a large search space with low memory usage. Upon success, PSL generates an
efficient proof script, which bypasses a large part of the proof search. We also present PSL’s

monadic interpreter to show that the underlying idea of PSL is transferable to other ITPs.

Keywords

Proof Script Monadic Translation Proof Obligations Lazy Sequence

Depth-first Iterative-deepening Search (IDDFS)

Future work

) SpringerLink https://doi.org/10.1007/978-3-319-96812-4_19

SeLFiE +conjecturing

International Conference on
CICM 2018: Intelligent Computer Mathematics pp 225-231 | Cite as

Goal-Oriented Conjecturing for Isabelle/HOL

Computer ic

Authors Authors and affiliations

Yutaka Nagashima, jylian Parsert

Conference paper

- - 3 359
First Online: 18 July 2018

Citations Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11006)

iiven a proof goal ai
background context, PGT attempts to generate conjectures from the original goal b
transforming the original proof goal. These conjectures should be weak enough to be provable
by automation but sufficiently strong to identify and prove the original goal. By incorporating
PGT into the pre-existing PsL framework, we exploit Isabelle’s strong automation to identify

and prove such conjectures.

Keywords

Proof Goal Original Goal Strong Automation QuickCheck Isabelle Theory File

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be

updated as the learning algorithm improves.

Y. Nagashima—Supported by the European Regional Development Fund under the
project AI & Reasoning (reg. n0.CZ.02.1.01/0.0/0.0/15_003/0000466)

@ Springer Link

https://doi.org/10.1007/978-3-319-63046-5_32

Autematnd Detucton
cADk 26

International Conference on Automated Deduction
CADE 2017: Automated Deduction - CADE 26 pp 528-545 | Cite as

A Proof Strategy Language and Proof Script Generation
for Isabelle/HOL

Authors Authors and affiliations

Yutaka Nagashima, Ramana Kumar &1

Conference paper

proof search

Abstract

We introduce a language, PSL, designed to capture high level proof strategies in Isabelle/HOL.
Given a strategy and a proof obligation, PSL’s runtime system generates and combines various
tactics to explore a large search space with low memory usage. Upon success, PSL generates an
efficient proof script, which bypasses a large part of the proof search. We also present PSL’s

monadic interpreter to show that the underlying idea of PSL is transferable to other ITPs.

Keywords

Proof Script Monadic Translation Proof Obligations Lazy Sequence

Depth-first Iterative-deepening Search (IDDFS)

==> fully automatic inductive prover in Isabelle/HOL

Future work

' H A N K) SpringerLink ool org/10.1007/678-3-319-96812-4_19

YOU "B

SelLFiE +co

International Conference on
CICM 2018: Intelligent Computer Mathematics pp 225-231 | Cite as

Computer ic:

@ Springer Link

https://doi.org/10.1007/978-3-319-63046-5_32

International Conference on Automated Deduction
CADE 2017: Automated Deduction - CADE 26 pp 528-545 | Cite as

Goal-Oriented Conjecturing for Isabelle/HOL e . .
~rn A Proof Strategy Language and Proof Script Generation
Authors Authors and affiliations
for Isabelle/HOL
Yutaka Nagashima, jylian Parsert &
Authors Authors and affiliations
Conference paper o -
First Online: 18 July 2018 Yutaka Nagashima, Ramana Kumar
Citations Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11006) Conference paper - o
- t . p f I l
J g iiven a proof goal ai
background context, PGT attempts to generate conjectures from the original goal b Ab
transforming the original proof goal. These conjectures should be weak enough to be provable stract
by automation but sufficiently strong to identify and prove the original goal. By incorporating
PGT into the pre-existing PSL framework, we exploit Isabelle’s strong automation to identify We introduce a language, PSL, designed to capture high level proof strategies in Isabelle/HOL.
and prove such conjectures. Given a strategy and a proof obligation, PSL’s runtime system generates and combines various
K a tactics to explore a large search space with low memory usage. Upon success, PSL generates an
eywords . . q s

yw efficient proof script, which bypasses a large part of the proof search. We also present PSL’s
Proof Goal Original Goal Strong Automation QuickCheck Isabelle Theory File monadic interpreter to show that the underlying idea of PSL is transferable to other ITPs.
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be
updated as the learning algorithm improves. Keywor ds

Y. Nagashima—Supported by the European Regional Development Fund under the FroofiScript] MonadiciTranslation) |Proof Obligations) Tazy Sequence

project AI & Reasoning (reg. no.CZ.02.1.01/0.0/0.0/15_003/0000466) Depth-first Iterative-deepening Search (IDDFS)

—

==> fully automatic inductive prover in Isabelle/HOL

