M universitat
™ innsbruck

Learning theorem proving through self-play

Stanistaw Purgat

The goal

Learn to prove theorems without:
® any proofs
® any theorems
What we get:
® a list of axioms defining the logic

W universitat
H innsbruck

Overview

AlphaZero (briefly)

® Proving game

® adjusting MCTS for proving game
® some results

W universitat
H innsbruck

Neural black box

game state
S

4 +

move policy expected outcome
meR" veR

W universitat
innsbruc

Neural black box

(5177]—17 Vl)

(Sm Tn, Vn)

W universitat
innsbruc

Monte-Carlo Tree Search

game state
S
4
I 1
4 3
move policy expected outcome

m € R? velR

W universitat
H innsbruck

Monte-Carlo Tree Search

1
S
s T L~ choose a child according
51 5|2 53 ra By to the formula:
|
& T ¥
l C- niinﬂ',' —+ Vi
. ¢ = (log Mrgaetd 4 ¢jpyp)
1 1] weighted Chase :b19652
avelage it = 1.25

W universitat
H innsbruck

Monte-Carlo

v,=0.5
v=0.5
n=1

W universitat
innsbruc

Monte-Carlo

v,=-0.2 v,=0.3
=-0.2 v=0.3 policy: m = (%%, %)
n=1 n=3

W universitat
innsbruc

Closing the loop

play lots of games
® choose moves randomly, according to MCTS policy

use finished games for training:

® target value in the result of the game
® target policy is the MCTS policy

also add noise to neural network output to increase exploration

W universitat
H innsbruck

Proving game

theorem

Prove the theorem

win lose

W universitat
innsbruc

Proving game

|

Construct a theorem

Prove the theorem Adversary wins

Prover wins

W universitat
innsbruc

Prolog-like proving

AFX ALY
AEXAY

holds(A,and(X,Y)) :- holds(A, X), holds(A,Y)

W universitat
H innsbruck

12

Prolog-like proving

[X:AFXA==X,...]
|

1
AEXAY :mAEX, ALY

!

XAEX A==X i=X:AFEX, XtAF =X
| |

d T
[XGAE X, X:AF ==X, ...]

W universitat
H innsbruck

13

Prolog-like proving

[X:A,and(X, not(not(X)))),...]
|

1
holds(A,and(X,Y)) :- holds(A, X), holds(A,Y)

!

holds(X:A,and(X, not(not(X)))) :- holds(X:A, X), holds(X:A,not(not(X)))
| |

1 ¥
[holds(X:A,X), holds(X:A,not(not(X))),...]

H innsbruck 14

Prolog-like theorem constructing

[holds(X:A, and(X, not(not(X)))),...]

T—l
holds(X:A,and(X, not(not(X)))) :- holds(X:A, X), holds(X:A,not(not(X)))

;

holds(A,and(X,Y)) :- holds(A, X), holds(A,Y)
T T

I |
[holds(X:A,X), holds(X:A,not(not(X))),...]

bad idea

W universitat

H innsbruck 15

Prolog-like theorem constructing

[holds(A,), ... |
?

[
holds(A, &) :- holds(A,or(0,©)),holds(A, implies(Q,é)), holds(A, implies(V, &))

,

holds(A,Z) :-holds(A, or(X,Y)), holds(A, implies(X,Z)),holds(A, implies(Y,Z))
T s 1
(0,0, 0,..]
bad idea

W universitat

H innsbruck 16

Prolog-like theorem constructing

[7]
l
1
holds(A,and(X,Y)) :- holds(A, X), holds(A,Y)
!
holds(A,and(X,Y)) :- holds(A, X), holds(A,Y)
| |
{ T

[holds(A, X), holds(A,Y)]

W universitat

& innsbruck 17

Prolog-like theorem constructing

T

!

holds(X:A, and(X,not(not(X))))

!

holds(x:a,and(x,not(not(x))))

M universitat
H innsbruck

18

Forcing termination of the game

Step limit:
® ugly extension of game state
® strategy may depend on number of steps left

e even if we hide it, there is a correlation:
large term constructed ~ few steps left ~ will likely lose

W universitat
H innsbruck

19

Forcing termination of the game

Sudden death chance:
® game states nicely equal
® no hard limit for length of a theorem

During training playout, randomly terminate game with chance py.
In MCTS, adjust value v/ = (=1) - pg + v - (1 — pq).

W universitat
H innsbruck

20

Disadvantages of this game

® two different players - if one player starts winning every game, we can’t
learn much

® proof use single inference steps - inefficient
® players don’t take turns - MCTS not designed for that situation

W universitat
H innsbruck

21

Not using maximum

W universitat
innsbruc

22

Not using maximum

v,=0.99
v=0.99
n=1

W universitat
innsbruc

23

Not using maximum

W universitat
innsbruc

24

Not using maximum

W universitat
H innsbruck

25

Certainty propagation

W universitat
= innsbruck

26

Certainty propagation

n=1

W universitat
= innsbruck

27

Certainty propagation

Vo= -04
v=-0.73 (-1,1)
n=6

v,=03
v=0.9(0.9,1)
n=4

v,=0.5
v=10.9(0.9,1)
n=3

v=0(-1,1)
n=0

v,=0.1
v=0.1 (-1,1)
n=1

v,=0.9
v=0.9 (0.9,0.9)
n=1

W universitat
= innsbruck

28

Certainty propagation

for uncertain leafs: for certain leafs: recursively:

v=01 v = result v = min(u, max(/, a))
. o _ B+Xvin;

a=n a = result a= =1

|=-1 | = result | = max;/;

u=1 u = result U = max; u;

when player changes:
¢ values and bounds flip
® lower and upper bound switch places

W universitat
H innsbruck

29

Learning the proving game

Like AlphaZero, with few differences:
® using Transformer (encoder) for &

e for theorems that prover failed to prove, show proper path with additional
training samples

® during evaluation, greedy policy and step limit instead of sudden death
® balance training batches to have even split of won and lost games

W universitat
= innsbruck

30

Proving game evaluation

Construct a theorem

evaluation theorem

Prove the theorem Adversary wins

Prover wins

W universitat
innsbruc

Potential problems

Players are non symmetrical:
® Prover could be winning everything

e Adversary could be winning everything
to some extent this is handled by additional training samples

can be solved by more exploration

W universitat
H innsbruck

32

Uninteresting space of hard theorems

Ixf(x) = y (where f is a one-way function)

® easy to prove if you can choose what y is

® hard to prove if y is fixed
so hard that we can’t expect the prover to learn it

this is stable - more learning and/or exploration won't help

W universitat
H innsbruck

33

Results

(intuitionstic first-order - sequential calculus)

20

solved theorems

time (hours)

W universitat
H innsbruck

34

Results

Solved:

= (VaVbpc(fe(a, b)) — 3aTepc(fe(d, €)))
F (=(pa(D) = po(0)) = (pu(D) — pa(0)))

Unsolved:

= (Japb(@) — Fepo(c))

(3)

35

Results

(intuitionstic first-order - sequential calculus)

construction failed [l proven [l not proven

100%
75%
50%

25% /\\MNV
N |

0%

time

W universitat 36
H innsbruck

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - first hour:

A LFC

FH(L—B)

(A—B),AFB
A,B,C,D,E,F,G,H+H

A B CD,EF GHIJ K LMEFM
A,B,C,D.E,F,G,H,I+I

W universitat
= innsbruck

37

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - second hour:

VaQaC - Q,C
F(BV(—-LVC))

(AN QQF) F FeQcQeF
(AANB)F (D — B)
(ANB)F (DVA)
F((BA(CAD))—C)

W universitat
= innsbruck

38

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - third hour:

Va(QeQE A Qg(Qa) * QL)) F Qg(Qaf + QL)
A,B,C,D,E,F,G,((HA L)AI)F —K
A,B,C,D,E,F,G,H, L+ (JVK)
A,-B,C,(DAB)F (FVG)

Va(pp(fe(fa(a, 0),0)) A L), ~=E + JgQql
A,B,—C,D,E,(CAF)F (H+ —1)

W universitat
= innsbruck

39

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - twelth hour:

A, B, (VCQe(QCH * —|—|—|—\QjQ/—|(—|J_ * (—\—|(J_ * QCQ) * —|—\QC5))) <~ A)
- Qe(QCH * —|—|—|—|QjQ/—|(—|J_ * (—|—|(J_ * QCQ) * —|—|QCS)))

A,B, (VX <3 A) F X

W universitat

& innsbruck 40

How to do better

® train longer and/or harder
costly

® relegate low-level reasoning to some more efficient solver
need to invent some other mechanism for generating theorems

® allow use of theorems, not only axioms
action space becomes large and changing over time
all above still face uninteresting theorem space

® use some other objective
would be nice to find theorems that are useful in proving other theorems
- but how exactly would that work?

W universitat
= innsbruck

41

Thank you for your attention!

Stanistaw Purgat

	Bookmark Title
	Overview

	Thanks

