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The goal

Learn to prove theorems without:

• any proofs

• any theorems

What we get:

• a list of axioms defining the logic
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Overview

• AlphaZero (briefly)

• Proving game

• adjusting MCTS for proving game

• some results
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Neural black box

game state

S

expected outcome

v ∈ R
move policy

π ∈ Rn
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Neural black box

(S1, π1, v1)
...

(Sn, πn, vn)
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Monte-Carlo Tree Search

game state

S

expected outcome

v ∈ R
move policy

π ∈ Rn
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Monte-Carlo Tree Search

S

π v

weighted
average

S1 S2 S3

choose a child according
to the formula:

c ·
√
n

ni
πi + vi

c =
(

log n+cbase+1
cbase

+ cinit
)

cbase = 19652
cinit = 1.25
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Monte-Carlo Tree Search
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Monte-Carlo Tree Search
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Closing the loop

• play lots of games

• choose moves randomly, according to MCTS policy
• use finished games for training:

• target value in the result of the game
• target policy is the MCTS policy

• also add noise to neural network output to increase exploration
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Proving game

theorem

Prove the theorem

losewin
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Proving game

Construct a theorem

Prove the theorem Adversary wins

Prover wins
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Prolog-like proving

A ` X A ` Y
A ` X ∧ Y

(1)

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y) (2)
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Prolog-like proving

[ X:A ` X ∧ ¬¬X , ... ]

A ` X ∧ Y :- A ` X, A ` Y

X:A ` X ∧ ¬¬X :-X:A ` X, X:A ` ¬¬X

[ X:A ` X, X:A ` ¬¬X , ... ]
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Prolog-like proving

[ X:A, and(X, not(not(X)))) , ... ]

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

holds(X:A, and(X, not(not(X)))) :- holds(X:A,X), holds(X:A, not(not(X)))

[ holds(X:A,X), holds(X:A, not(not(X))) , ... ]

14



Prolog-like theorem constructing

[ holds(X:A, and(X, not(not(X)))) , ... ]

holds(X:A, and(X, not(not(X)))) :- holds(X:A,X), holds(X:A, not(not(X)))

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

[ holds(X:A,X), holds(X:A, not(not(X))) , ... ]

bad idea
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Prolog-like theorem constructing

[ holds(A,♣) , ... ]

holds(A,♣) :- holds(A, or(♦,♥)), holds(A, implies(♦,♣)), holds(A, implies(♥,♣))

holds(A,Z) :- holds(A, or(X, Y)), holds(A, implies(X,Z)), holds(A, implies(Y,Z))

[ �, �, � , ... ]

bad idea
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Prolog-like theorem constructing

[ T ]

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

[ holds(A,X), holds(A, Y) ]
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Prolog-like theorem constructing

T

holds(X:A, and(X, not(not(X))))

holds(x:a, and(x, not(not(x))))
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Forcing termination of the game

Step limit:

• ugly extension of game state

• strategy may depend on number of steps left

• even if we hide it, there is a correlation:
large term constructed ∼ few steps left ∼ will likely lose
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Forcing termination of the game

Sudden death chance:

• game states nicely equal

• no hard limit for length of a theorem

During training playout, randomly terminate game with chance pd.
In MCTS, adjust value v′ = (−1) · pd + v · (1− pd).
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Disadvantages of this game

• two different players - if one player starts winning every game, we can’t
learn much

• proof use single inference steps - inefficient

• players don’t take turns - MCTS not designed for that situation
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Not using maximum
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Not using maximum
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Not using maximum
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Not using maximum
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Certainty propagation
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Certainty propagation

27



Certainty propagation
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Certainty propagation

for uncertain leafs:
v = �
a = �
l = −1
u = 1

for certain leafs:
v = result
a = result
l = result
u = result

recursively:
v = min(u,max(l, a))
a = �+Σvi·ni

n+1
l = maxi li
u = maxi ui

when player changes:

• values and bounds flip

• lower and upper bound switch places
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Learning the proving game

Like AlphaZero, with few differences:

• using Transformer (encoder) for �

• for theorems that prover failed to prove, show proper path with additional
training samples

• during evaluation, greedy policy and step limit instead of sudden death

• balance training batches to have even split of won and lost games
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Proving game evaluation

Construct a theorem

evaluation theorem

Prove the theorem Adversary wins

Prover wins
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Potential problems

Players are non symmetrical:

• Prover could be winning everything

• Adversary could be winning everything
to some extent this is handled by additional training samples

can be solved by more exploration
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Uninteresting space of hard theorems

∃xf(x) = y (where f is a one-way function)

• easy to prove if you can choose what y is

• hard to prove if y is fixed
so hard that we can’t expect the prover to learn it

this is stable - more learning and/or exploration won’t help
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Results

(intuitionstic first-order - sequential calculus)
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Results

Solved:

` (∀a∀bpc(fc(a,b))→ ∃d∃epc(fc(d, e)))

` (¬(pa(∅)→ pb(∅))→ (pb(∅)→ pa(∅)))

Unsolved:

` (∃apb(a)→ ∃cpb(c)) (3)
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Results

(intuitionstic first-order - sequential calculus)
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Results

(intuitionistic first-order - sequential calculus)
unproven theorems - first hour:

A,⊥ ` C
` (⊥ → B)

(A→ B),A ` B
A,B,C,D,E, F,G,H ` H

A,B,C,D,E, F,G,H, I, J,K, L,M ` M
A,B,C,D,E, F,G,H, I ` I
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Results

(intuitionistic first-order - sequential calculus)
unproven theorems - second hour:

∀aΩaC ` ΩaC

` (B ∨ (¬⊥ ∨ C))

(A ∧ ΩcΩeF) ` ∃eΩcΩeF

(A ∧ B) ` (D→ B)

(A ∧ B) ` (D ∨ A)

` ((B ∧ (C ∧ D))→ C)
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Results

(intuitionistic first-order - sequential calculus)
unproven theorems - third hour:

∀a(ΩcΩaE ∧ Ωg(ΩaJ ? ΩaL)) ` Ωg(ΩaJ ? ΩaL)

A,B,C,D,E, F,G, ((H ∧ ⊥) ∧ I) ` ¬K
A,B,C,D,E, F,G,H,⊥ ` (J ∨ K)

A,¬B,C, (D ∧ B) ` (F ∨ G)

∀a(pb(fc(fd(a, ∅), ∅)) ∧ ⊥),¬¬E ` ∃gΩgI

A,B,¬C,D,E, (C ∧ F) ` (H↔ ¬⊥)
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Results

(intuitionistic first-order - sequential calculus)
unproven theorems - twelth hour:

A,B, (∀cΩe(ΩcH ? ¬¬¬¬ΩjΩl¬(¬⊥ ? (¬¬(⊥ ? ΩcQ) ? ¬¬ΩcS)))↔ A)

` Ωe(ΩcH ? ¬¬¬¬ΩjΩl¬(¬⊥ ? (¬¬(⊥ ? ΩcQ) ? ¬¬ΩcS)))

A,B, (∀cX↔ A) ` X

40



How to do better

• train longer and/or harder
costly

• relegate low-level reasoning to some more efficient solver
need to invent some other mechanism for generating theorems

• allow use of theorems, not only axioms
action space becomes large and changing over time

all above still face uninteresting theorem space

• use some other objective
would be nice to find theorems that are useful in proving other theorems
– but how exactly would that work?
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Thank you for your attention!

Stanisław Purgał
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