
Learning theorem proving through self-play

Stanisław Purgał

The goal

Learn to prove theorems without:

• any proofs

• any theorems

What we get:

• a list of axioms defining the logic

1

Overview

• AlphaZero (briefly)

• Proving game

• adjusting MCTS for proving game

• some results

2

Neural black box

game state

S

expected outcome

v ∈ R
move policy

π ∈ Rn

3

Neural black box

(S1, π1, v1)
...

(Sn, πn, vn)

4

Monte-Carlo Tree Search

game state

S

expected outcome

v ∈ R
move policy

π ∈ Rn

5

Monte-Carlo Tree Search

S

π v

weighted
average

S1 S2 S3

choose a child according
to the formula:

c ·
√
n

ni
πi + vi

c =
(

log n+cbase+1
cbase

+ cinit
)

cbase = 19652
cinit = 1.25

6

Monte-Carlo Tree Search

7

Monte-Carlo Tree Search

8

Closing the loop

• play lots of games

• choose moves randomly, according to MCTS policy
• use finished games for training:

• target value in the result of the game
• target policy is the MCTS policy

• also add noise to neural network output to increase exploration

9

Proving game

theorem

Prove the theorem

losewin

10

Proving game

Construct a theorem

Prove the theorem Adversary wins

Prover wins

11

Prolog-like proving

A ` X A ` Y
A ` X ∧ Y

(1)

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y) (2)

12

Prolog-like proving

[X:A ` X ∧ ¬¬X , ...]

A ` X ∧ Y :- A ` X, A ` Y

X:A ` X ∧ ¬¬X :-X:A ` X, X:A ` ¬¬X

[X:A ` X, X:A ` ¬¬X , ...]

13

Prolog-like proving

[X:A, and(X, not(not(X)))) , ...]

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

holds(X:A, and(X, not(not(X)))) :- holds(X:A,X), holds(X:A, not(not(X)))

[holds(X:A,X), holds(X:A, not(not(X))) , ...]

14

Prolog-like theorem constructing

[holds(X:A, and(X, not(not(X)))) , ...]

holds(X:A, and(X, not(not(X)))) :- holds(X:A,X), holds(X:A, not(not(X)))

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

[holds(X:A,X), holds(X:A, not(not(X))) , ...]

bad idea

15

Prolog-like theorem constructing

[holds(A,♣) , ...]

holds(A,♣) :- holds(A, or(♦,♥)), holds(A, implies(♦,♣)), holds(A, implies(♥,♣))

holds(A,Z) :- holds(A, or(X, Y)), holds(A, implies(X,Z)), holds(A, implies(Y,Z))

[�, �, � , ...]

bad idea

16

Prolog-like theorem constructing

[T]

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

holds(A, and(X, Y)) :- holds(A,X), holds(A, Y)

[holds(A,X), holds(A, Y)]

17

Prolog-like theorem constructing

T

holds(X:A, and(X, not(not(X))))

holds(x:a, and(x, not(not(x))))

18

Forcing termination of the game

Step limit:

• ugly extension of game state

• strategy may depend on number of steps left

• even if we hide it, there is a correlation:
large term constructed ∼ few steps left ∼ will likely lose

19

Forcing termination of the game

Sudden death chance:

• game states nicely equal

• no hard limit for length of a theorem

During training playout, randomly terminate game with chance pd.
In MCTS, adjust value v′ = (−1) · pd + v · (1− pd).

20

Disadvantages of this game

• two different players - if one player starts winning every game, we can’t
learn much

• proof use single inference steps - inefficient

• players don’t take turns - MCTS not designed for that situation

21

Not using maximum

22

Not using maximum

23

Not using maximum

24

Not using maximum

25

Certainty propagation

26

Certainty propagation

27

Certainty propagation

28

Certainty propagation

for uncertain leafs:
v = �
a = �
l = −1
u = 1

for certain leafs:
v = result
a = result
l = result
u = result

recursively:
v = min(u,max(l, a))
a = �+Σvi·ni

n+1
l = maxi li
u = maxi ui

when player changes:

• values and bounds flip

• lower and upper bound switch places

29

Learning the proving game

Like AlphaZero, with few differences:

• using Transformer (encoder) for �

• for theorems that prover failed to prove, show proper path with additional
training samples

• during evaluation, greedy policy and step limit instead of sudden death

• balance training batches to have even split of won and lost games

30

Proving game evaluation

Construct a theorem

evaluation theorem

Prove the theorem Adversary wins

Prover wins

31

Potential problems

Players are non symmetrical:

• Prover could be winning everything

• Adversary could be winning everything
to some extent this is handled by additional training samples

can be solved by more exploration

32

Uninteresting space of hard theorems

∃xf(x) = y (where f is a one-way function)

• easy to prove if you can choose what y is

• hard to prove if y is fixed
so hard that we can’t expect the prover to learn it

this is stable - more learning and/or exploration won’t help

33

Results

(intuitionstic first-order - sequential calculus)

time (hours)

so
lv

ed
 th

eo
re

m
s

0

5

10

15

20

0 5 10 15 20 25

34

Results

Solved:

` (∀a∀bpc(fc(a,b))→ ∃d∃epc(fc(d, e)))

` (¬(pa(∅)→ pb(∅))→ (pb(∅)→ pa(∅)))

Unsolved:

` (∃apb(a)→ ∃cpb(c)) (3)

35

Results

(intuitionstic first-order - sequential calculus)

time

0%

25%

50%

75%

100%

5 10 15 20

construction failed proven not proven

36

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - first hour:

A,⊥ ` C
` (⊥ → B)

(A→ B),A ` B
A,B,C,D,E, F,G,H ` H

A,B,C,D,E, F,G,H, I, J,K, L,M ` M
A,B,C,D,E, F,G,H, I ` I

37

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - second hour:

∀aΩaC ` ΩaC

` (B ∨ (¬⊥ ∨ C))

(A ∧ ΩcΩeF) ` ∃eΩcΩeF

(A ∧ B) ` (D→ B)

(A ∧ B) ` (D ∨ A)

` ((B ∧ (C ∧ D))→ C)

38

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - third hour:

∀a(ΩcΩaE ∧ Ωg(ΩaJ ? ΩaL)) ` Ωg(ΩaJ ? ΩaL)

A,B,C,D,E, F,G, ((H ∧ ⊥) ∧ I) ` ¬K
A,B,C,D,E, F,G,H,⊥ ` (J ∨ K)

A,¬B,C, (D ∧ B) ` (F ∨ G)

∀a(pb(fc(fd(a, ∅), ∅)) ∧ ⊥),¬¬E ` ∃gΩgI

A,B,¬C,D,E, (C ∧ F) ` (H↔ ¬⊥)

39

Results

(intuitionistic first-order - sequential calculus)
unproven theorems - twelth hour:

A,B, (∀cΩe(ΩcH ? ¬¬¬¬ΩjΩl¬(¬⊥ ? (¬¬(⊥ ? ΩcQ) ? ¬¬ΩcS)))↔ A)

` Ωe(ΩcH ? ¬¬¬¬ΩjΩl¬(¬⊥ ? (¬¬(⊥ ? ΩcQ) ? ¬¬ΩcS)))

A,B, (∀cX↔ A) ` X

40

How to do better

• train longer and/or harder
costly

• relegate low-level reasoning to some more efficient solver
need to invent some other mechanism for generating theorems

• allow use of theorems, not only axioms
action space becomes large and changing over time

all above still face uninteresting theorem space

• use some other objective
would be nice to find theorems that are useful in proving other theorems
– but how exactly would that work?

41

Thank you for your attention!

Stanisław Purgał

	Bookmark Title
	Overview

	Thanks

