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Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

Introduction

Particle Physics has gone through a few waves of machine learning innovations and is giving back
ideas to the machine learning research. Moving from the regime of shoehorning physics problems
into forms where existing state-of-the-art machine learning solutions can be applied, particle physics
is starting to marry machine learning tools with physics insight to create a new family of “physics-
aware machine learning” algorithms where the objective of the tools more closely matches the actual
objective of the physicist. This allows leveraging extra information from existing physics tools that
can boost performances beyond the use of off-the-shelf machine learning algorithms.

We will compare a neural network model aware of the flexibility of a theoretical physics model
(developed by [5]) and a traditional approach optimised at a single point in the phase space being
probed with no explicit knowledge of the physics model, for a particular particle physics study very
important for physics at the Large Hadron Collider (LHC), CERN. We will show that the former is
better even at the particular point at which the traditional approach was optimised, simply because
it “understands” the physics being studied better.

Figure 1: The Standard Model Lagrangian

The Problem of Quantum Interference of the Offshell Higgs

The Lagrangian of the Standard Model (SM) of particle physics is a mathematical formula (Figure 1)
that condenses our current understanding of the universe from a quantum perspective, and is known
to be incomplete (it does not explain gravity, neutrino mass or matter-antimatter dis-balance).
There are several proposed mathematical extensions to the SM (Lagrangians with extra terms) but
the most promising ones are already being excluded by data. The SM is continuously being tested
at the LHC where the ATLAS experiment [2] collects a huge amount of data to perform precision
measurements to find hints of a direction in which to expect new physics. The data is too complex
to interpret without involved statistical techniques and a deep understanding of precisely what the
SM predicts.

The predictions of a model (Lagrangian) using Quantum Field Theory (QFT) calculations is too
expensive to compute analytically so an entire sub-field of particle physics develops Monte-Carlo
based simulation techniques for it. At the end, physicists are interested in the inverse problem of
going from the measured data to the value of the theory parameters (parameters in the Lagrangian)
that best describe it. Re-doing the data analysis for each hypothesis (each new proposed Lagrangian)
is impossible given the limited resources, and hence studies are selected that can have an impact
on the assessment of multiple promising proposals. One such study is the interference between the
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(a) High level feature constructed
based on physics motivations

(b) A different feature

Figure 2: Distributions of (a) a physics motivated feature that is usually used for a ”four lepton”
analysis, but cannot differentiate between µ = 0 and µ = 4 (b) another physics motivated feature
which can break the degeneracy between µ = 0 and µ = 4.

“offshell” Higgs boson processes and other “background” processes where four leptons are observed
by the detector at the very end (“final state”).

The “offshell” Higgs boson particle is “virtual”, with a mass far away from the one described by
special relativity’s E = MC2 (Heisenberg allowed particles to disobey Einstein as long as they do
so for a very short period of time, through his famous uncertainty principle, σEσt ≥ ~

2 ). Quantum
mechanics also prescribes that given an initial and final state, all possible intermediate states can and
will occur, and they might interfere with one another. For the ATLAS “Higgs to four leptons” study
this implies that the observed physics could look different for small changes in the ”Higgs Couplings”,
i.e. parameters in the theory that determine how strongly the Higgs interacts with other fields. In
this project, these parameters are assumed to scale in similar ways and are represented together by
the “signal strength” µ.

Quantum Interference is Problematic to Traditional Algorithms

Usually the signal and background quantum processes come from disjoint phase spaces and can
thus be simulated separately in a particle physics simulation. However, in the presence of quantum
inference between the signal and background processes, they need to be simulated together to model
the probability distributions correctly. As a simplified example, the probability of having one par-
ticular sample X, denoted P (X) (with 0 ≤ P (X) ≤ 1) is a function of two complex functions from
Quantum Field Theory, Ms(X), Mb(X) (with Ms,Mb ∈ C), for the signal and background process
respectively, is given by Eq. 1. If the third term was insignificant and could be ignored, the signal
and background contributions could be simulated separately and combined when needed. However
in this case, the contribution from the mixed term cannot be ignored.

P (X) = |Ms(X) +Mb(X)|2 = |Ms(X)|2 + |Mb(X)|2 + 2Re(Ms(X)Mb(X)) (1)

This renders the notion of “true class labels” ill-defined, and thus the task cannot translate into a
classification problem. Further, since the inference describes very different kinds of physics depending
on the value of µ, any algorithm will have to be aware of the physics going on at various values
of µ, not just the one at the SM (where µ = 1). Figure 2 demonstrates how a high level, physics
motivated feature can fail to distinguish between two very different kinds of physics, which happens
due to the added complications of quantum interference.

A new family of machine learning algorithms [3, 4, 5, 6] have recently been in development that
are at the intersection of machine learning, probabilistic programming, statistics and particle physics
phenomenology. The techniques rely on the ability to simulate accurate samples and “cheat”, i.e.
extract additional information about the physics model from the simulator that would be unavailable
in real data recorded at the LHC. The additional information allows to train neural networks that
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are not just aware of “Signal” and “Background” classes but rather learn the flexibility of the
Largrainians themselves. The authors are able to show on a toy particle physics data-sets that
training on such augmented data allows to use neural networks as a tool for calculus of variations
and arrive at the likelihood ratio between any two physics models.

The actual ATLAS Higgs to four leptons analysis [1] is more complicated, and the family of
physics models is confined by extra assumptions from the inference strategy and also prior knowledge
from other measurements. We investigate the possibility to adapt the technology presented in [5] to
this problem. Further, particle physicists have found a way to study almost all possible alternatives
to the SM that might be measurable at the LHC using an “Effective Field Theory Framework”
(EFT Framework) [7]. This is possible because of some mathematical and physical properties any
Lagrangian must satisfy, making the number of terms of the Lagrangian to study finite. A successful
use of these new algorithms within the ATLAS experiment will pave the way for further investigation
into them for ongoing studies within ATLAS in the context of EFT.

Results
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Figure 3: P-value scan using various Histogram techniques compared to SALLY and ALICES for a
true value of µ = 1 (sharper is better). The horizontal grey line indicates the p-value corresponding
to a 1σ confidence interval

Some preliminary results (Figure 3) are shown to compare a traditional “histogram” approach of
particle physics with more and more “physics-aware” algorithms to infer the true parameters of the
Lagrangian. At inference time, the inputs of the neural network, for a given sample, are the features
measured by the detector, as well as the hypothesis being tested (i.e. one particular value of µ). The
output of the network is the likelihood ratio between the test hypothesis and the null hypothesis
(µ = 1). The output for all samples in the test dataset for a given test hypothesis is converted into
a single p-value, as in standard statistics, and the entire process is redone for the same test dataset
with a new test hypothesis (new value of µ). The p-values for the histogram techniques is calculated
using multi-binned Poisson likelihood with the normalised histogram of particular physics motivated
features. The “SALLY” (Score Approximates Likelihood Locally) model is aware of physics in the
neighbourhood of the SM (µ = 1) whereas “ALICES” (Approximate Likelihood with Improved
Cross-entropy Estimator and Score) is aware of physics in the entire range of µ, and shows better
results (narrower peaks in a p-value scan, smaller 1σ margin of uncertainty for measuring µ), thus
demonstrating the usefulness of a physics-aware model.
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Conclusion

There is a long history of cross-pollination between particle physics and machine learning. A first
study is performed to try to adapt a family of novel “physics-aware” machine learning algorithms to
a realistic Higgs to four leptons analysis for the ATLAS experiment at CERN. Other efforts along
similar lines such as probabilistic programming, graph networks, physics-aware generative models,
adversarial networks, and so on also indicate the impending shift in the particle physics community
from shoehorning physics problems into state-of-the-art machine learning algorithms to developing
physics-aware algorithms that can leverage available physics insight as well as inject inductive biases
to algorithms in a way that was not possible before.

Our initial studies indicate that a neural network aware of the theoretical physics model performs
better inference than traditional physics-agnostic techniques, in the presence of severe quantum
interference. Further studies need to be done taking into account all signal and background processes
as well as simulating within the ATLAS software infrastructure to take into account the true detector
effects. These machine learning models for the first time could be extended to also be aware of
systematic uncertainties (when there is a known systematic difference between the simulated training
data, and the real unlabeled data to which we will apply the model, but the amount and nature of the
difference is unknown) that were difficult to incorporate in traditional machine learning techniques.
Success with these techniques encourages the idea of extending this philosophy to other fields, such
as “Maths-Aware Machine Learning”.
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