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Progress in automated reasoning & our work
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Progress in automated reasoning & our work

Axiom pinpointing for £L£+
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The question: how can AR improve ML's robustness?

Moshe Vardi
Machine learning and logic: Fast and slow
thinking

ABSTRACT. There is a recent perception that
computer science is undergoing a Kuhnian
paradigm shift, with CS as a model-driven
science being replaced as a data-driven science.
| will argue that, in general new scientific theories
refine old scientific theories, rather than replace
them. Thus, data-driven CS and model-driven CS
complement each other, just as fast thinking and
slow thinking complement each other in human /\)
thinking, as explicated by Daniel Kahneman. | will %

then use automated vehicles as an example, haV
where in recent years, car makers and tech

. . \
companies have been racing to be the first to o«

market. In this rush there has been little
discussion of how to obtain scalable
standardization of safety assurance, without
which this technology will never be commercially
deployable. Such assurance requires formal
methods, and combining machine learning with
logic is the challenge of the day.

M. Vardi, MLMFM’18 Summit
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Machine learning vs. automated reasoning

Exploit ML Improve Reasoners

(Efficiency)
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Machine learning vs. automated reasoning

Improve Reasoners

Exploit ML (Efficiency)

Improve ML
(Robustness)

Exploit Reasoners

4/42



Our work ...
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Our work ...

® Focus on classification problems

® Globally correct (ie rigorous) explanations for predictions made

® Disclaimer: first inroads into ML & XAl
comments welcome
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Outline

Successes & Pitfalls of ML
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Some ML successes & expectations

® |[BM Watson
® Deepmind AlphaGo
— & AlphaZero

® Image Recognition

® Speech Recognition

® Financial Services

® Medical Diagnosis

Circa 2017

A\,

Opportunities for Al / ML (until 2025)

Healthcare
$54bn
savings

Agriculture
$20bn
addressable market

Energy
$140bn
savings

Retail
$54bn + $41bn
savings + revenue

Finance (US)
$34bn~$43bn
savings & revenue

Source: Goldman-Sachs
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Many more applications expected
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But ML models are brittle

SPEED
LIMIT

45

Eykholt et al’18

Aung et al’17

9/42



But ML models are brittle

SPEED
LIMIT

45

+ 0.005 x

Aung et al’17

“airliner”

Source: http://gradientscience.org/intro_adversarial/
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http://gradientscience.org/intro_adversarial/

Also, some ML models are interpretable

decision|rule lists|sets

decision trees

‘ Ex. ‘ Vacation (V) ‘ Concert (C) ‘ Meeting (M) ‘ Expo (E) H Hike (H) ‘
e 0 0 1 0 0
€ 1 0 0 0 1
e3 0 0 1 1 0
ey 1 0 0 1 1
=3 0 1 1 0 0
=] 0 1 1 1 0
er 1 1 0 1 1
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Also,

some ML models are interpretable

decision|rule lists|sets

decision trees

if =Meeting then Hike
if —=Vacation then —Hike

‘ Ex. ‘ Vacation (V) ‘ Concert (C) ‘ Meeting (M) ‘ Expo (E) H H'ke (H) ‘
e 0 0 1 0 0
€ 1 0 0 0 1
e3 0 0 1 1 0
ey 1 0 0 1 1
=3 0 1 1 0 0
=] 0 1 1 1 0
er 1 1 0 1 1
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But other ML models are not (interpretable)...

Why does the NN predict a cat?
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Sample of ongoing efforts

e Verification of NNs:

— Sound vs. unsound vs. complete [M.P. Kumar, VMCAI'19]
— E.g. Reluplex: dedicated reasoning within SMT solver

¢ Explanations for non-interpretable (ie black-box) models:
— Until recently, most approaches heuristic-based
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Outline

Explainable Al
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What is eXplainable Al (XAl)?
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What is eXplainable Al (XAl)?

Machine Learning System

? 2 Cat
\\ N Q ° [+ ] D>
"0\\}\ Q@ VNI K
e Mg : e
@ 3ele o
@ o o

This is a cat:
¢ It has fur, whiskers, and claws.
¢ |t has this feature:

This is a cat.

anation
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Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
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W We summarize the potential impact
that the European Union’s new General
Data Protection Regulation will have on
the routine use of machine-learning
algorithms. Slated to take effect as law
across the European Union in 2018, it|
will place restrictions on automated
individual decision making (that is,
algorithms that make decisions based
on user-level predictors) that “signifi-
cantly affect” users. When put into
practice, the law may also effectively cre-
ate a right to explanation, whereby a
user can ask for an explanation of an
algorithmic decision that significantly.
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try, it highlights opportunities for com-
puter scientists to take the lead in
designing algorithms and evaluation
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the routine use of machine-learning
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across the European Union in 2018, it|
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individual decision making (that is,
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W We summarize the potential impact] Expla inable Artificial Intell igence (MI)

A

EXPLAINAH[E ARTIFICIAL INTElLII][NEE

FY17 FY18 FY1s FY20 Fy21

David Gunning
DARPA/I20
Program Update November 2017
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Relevancy of XAl

TOWLSUN Inside DARPA's Pushto DS EW ﬂotk Times Magazine
Technology Make Artificial Intelligence Can A.L. Be
Review Explain Itself Taught to

Explain Itself?
Cliff Kuang
November 21, 2017

Sara Castellanos and Steven
Norton
August 10, 2017

The Dark Secret at
the Heart of AI

Will Knight

April 11, 2017

Intelligent Machines
Are Asked to Explain
How Their Minds
Work

Richard Waters

July 11, 2017 INANCIA

You better explain
yourself, mister:
DARPA's mission to

. .
ExecutiveBiz
Charles River Analytics-Led
make an accountable AT Team Gets DARPA Contract to
Dan Robinson &= Support Artificial Intelligence

September 29, 2017 Program

Ramona Adams

- Team investigates artificial “1: June 13, 2017
Entl'epl'eﬂeul' intelligence, machine learning I Itary
Elon Musk and Mark in DARPA project - EBEDDED SYSTEMS IASTEMPANY
Zuckerberg Are Arguing . Lisa Dalgle Why The Military And
About AI -- But They're June 14, 2017 Corporate America Want &

Both Missing the Point — To Make Al Explain

ng the Point R Ghosts in the Machine R {
July 28, 2017 u g:tréillr:azét czlécl'; Stev]eur:] :Ize;er;g% -
7’2 L Jane's '
N — .
///“\\ mMP“TERwoRm SCIENTIFIC = < How AI detectives are cracking open

DARPA’s XAI seeks orf:s':aqr‘c‘;:::; AMERICAN. the black box of dE:p IIevarning
: ey aul Voosen
explanations from ‘Explainable AT BIacheg:)Z(SEII'LyaI:gIsﬂAeI 5oy 6 2007

autonomous systems George Nott
Geoff Fein May 5, 2017
November 16, 2017 '

Ariel Bleicher
August 9, 2017
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Relevancy of XAl & hundreds(?) of recent papers
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How to XAI?

Main challenge: black-box models

Heuristic approaches, e.g. LIME & Anchor [cuereio et al, kDD'16, AAAI'1S]
— Compute local explanations ...
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— Compute local explanations ...
— ... offer no guarantees

Recent efforts on rigorous approaches
— Compilation-based, e.g. for BNCs [Shih,Choi&Darwiche, 1JCAI'18]
» Issues with scalability
— Abduction-based, e.g. for NNs [lgnatiev,Narodytska,M.-S., AAAI'19]
» Issues with scalability, but less significant
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Some current challenges

® For heuristic methods: lack of rigor (more later)
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Some current challenges

® For heuristic methods: lack of rigor (more later)

® For rigorous methods: scalability, scalability, scalability...
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Outline

Explanations with Abductive Reasoning
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From ML model to logic

Machine Learning System
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From ML model to logic

Machine Le

Cat

>
o>
o
>
o>

cube C formula F literal £

Must be able to encode ML model
E.g. SMT, ILP, etc.

20/42



Abductive explanations of ML models

given a classifier 7, a cube C and a prediction &,
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Abductive explanations of ML models

given a classifier 7, a cube C and a prediction &,

compute a (subset- or cardinality-) minimal C,, C C s.t.

C AF L
and

Co ANFEE
V7

iterative explanation procedure
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Computing primes

1. CoAF L
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Computing primes

1. C,NF FL —  tautology
2. ChoNFEE & ChE(F—=E)

%

Cm is a prime implicant of 7 — &£
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Computing one minimal explanation

® One subset-minimal explanation:

Input: F under M, initial cube C, prediction £
Output: Subset-minimal explanation Cp,
begin

forleC(C :

if Entails(C\ {/}, F =€) :
C«+C\{l}

return C

end
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Computing one minimal explanation

® One subset-minimal explanation:

Input: F under M, initial cube C, prediction £
Output: Subset-minimal explanation Cp,
begin

forleC(C :

if Entails(C\ {/}, F =€) :
C«+C\{l}

return C

end

® One cardinality-minimal explanation:

— Harder than computing subset-minimal explanation
— Exploit implicit hitting set dualization
— Details in earlier papers
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Outline

Explanations with Abductive Reasoning
Encoding Neural Networks
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Encodings NNs

Input Hidden Output
layer layer layer

B

Input #1 —
Input #2 —
.—>.*> Output
Input #3 —
Input #4 —

® Each layer (except first) viewed as a block

— Compute x’ given input x, weights matrix A, and bias vector b
— Compute output y given x’ and activation function
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Encodings NNs

Input Hidden Output
layer layer layer

Input #1 —
Input #2 —
Input #3 —

Input #4 —

® Each layer (except first) viewed as a block

— Compute x’ given input x, weights matrix A, and bias vector b
— Compute output y given x’ and activation function

® Fach unit uses a RelLU activation function
25 /42



Encoding NNs using MILP
Computation for a NN RelLU block:

xX=A-x+b
y = max(x/, 0)
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Encoding NNs using MILP

Computation for a NN RelLU block:

X =A-x+0b

y = max(x/, 0)

Block encoded as follows:

n
Zaf,jxj-i-bi =Yi—Si
j=1

zi=1—y; <0
zi=0—5<0

yi >0,5 >0,z € {0,1}

— Simpler encodings not as effective

[Fischetti&Jo, CJ'18]

[Katz et al. CAV'17]
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Results
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Experimental setup

® |mplementation in Python
— Supports SMT solvers through PySMT
» Yices2 used

— Supports CPLEX 12.8.0
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Experimental setup

® |mplementation in Python
— Supports SMT solvers through PySMT
» Yices2 used

— Supports CPLEX 12.8.0

® RelLU-based neural networks [Fischetti&Jo CJ'18]

— One hidden layer with i € {10, 15,20} neurons
— Pick NN that achieves good accuracy

® Benchmarks selected from:

— UCI Machine Learning Repository
— Penn Machine Learning Benchmarks
— MNIST Digits Database

® Machine configuration:

— Intel Core i7 2.8GHz, 8GByte
— Time limit — 1800s
— Memory limit — 4GByte

28 /42



Sample of experimental results

Minimal explanation

Minimum explanation

Dataset
sizez SMT (s) MILP (s) size SMT (s) MILP (s)
m 1 0.03 0.05 — — —
australian (14) a  8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —
m 13 0.13 0.14 = — =
backache (32) a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —
m 3 0.02 0.04 3 0.02 0.03
breast-cancer  (9) a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81
m 4 0.05 0.07 4 — 0.07
cleve (13) a 862 3.32 032 789 — 5.14
M 13 60.74 0.60 13 — 39.06
m 6 0.02 0.04 4 0.01 0.04
hepatitis ~ (19) a 11.42  0.07 0.06 939 407 2.89
M 19 0.26 0.20 19 27.05 22.23
m 3] 0.01 0.02 3 0.01 0.02
voting (16) a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77
m g 0.02 0.02 3 0.02 0.04
spect (22) a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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Comparing quality to compilation-based BNC

[Shih,Choi&Darwiche, 1JCAI'18]

® “Congressional Vooting Records” dataset
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Comparing quality to compilation-based BNC

[Shih,Choi&Darwiche, IJCAI'18]
® “Congressional Vooting Records” dataset

© (0101110000001 10 1)— data sample (16 features)

smallest size explanations computed by:
O 011 000 110 )—9 literals

° ( 0111 00 110 )—09 literals

subset-minimal explanations computed by our approach:

e ( 1 0 o0 0 ) — 4 literals
e ( 1 0 o0 ) — 3 literals
e ( 01 0 0 0 ) — b5 literals
e ( 01 0 0 1) — 5 literals
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There are many explanations of different quality

a) digit 1 b) simple expl. ) central pixels d) light pixels
a) digit 3 b) simple expl. ) central pixels d) light pixels
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Outline

Results
Assessing Local Explanations — Recent Work
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Assessing precision with model counting

L4 EValuated AnChor [Guerreiro et al., AAAILS]

— Anchor more accurate than LIME
— Anchor computes accuracy estimate for each explanation

® Represented ML model as propositional formula

— E.g. binarized NNs (BNNs)
— Use (approximate) model counter to assess precision of ML model
on explanation (anchor) computed by Anchor
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Preliminary results
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E 02 ] = ApproxMC3(lending)
= Anchor (recidivism)
= ApproxMC3(recidivism)
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0 50 100 150 200 250 300
#anchors

® Anchor often claims = 99% precision; this cannot be confirmed
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Summary and future work

® Principled approach to XAl
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Summary and future work

® Principled approach to XAl

® Based on abductive reasoning

® Applies a reasoning engine, e.g. SMT or MILP
® Provides minimality guarantees

® Tested on ReLU-based NNs

® First results on precision of Anchor’s explanations

® Other ML models?
® Address scalability:

— Better encodings?
— More advanced reasoners?

® Explanation enumeration? + preferences?

38/42



Questions?
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