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taken from:
https://github.com/seL4/seL4
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PSL and try-hard for Isabelle/HOL
The percentage of automatically proved obligations out of 1526 

proof obligations (timeout = 300s)

0%

25%

50%

75%

100%

try_hard sledgehammer

3

Part 1

73%

57%20%
16%

28% Part 2

Not specific to Isabelle!

Other ITPs / Logic Programming
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Isabelle/HOL before PSL

tactic / sub-tool

proof goal context

no sub-goal!subgoals

error-message
    It's blatantly clear
    You stupid machine, that what
    I tell you is true 
    (Michael Norrish)
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PSL (Proof Strategy Language)

PSL

meta-tool 
approach

programming 
language

extensible
(Eisbach)

tactics
quickcheck

runtime tactic 
generation

extensive 
proof search

low memory 
usage

efficient proof 
generation

native Isabelle 
proof script

sledgehammer

parallel 
search

almost no code clutter!!
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Isabelle/HOL with PSL

strategy

proof goal

context

efficient tactic
proved theorem /

subgoals / message

PSL

tactic / sub-tool

proof goal context

Much less interaction with 
Isabelle.
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Tactics 1
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preprocesgoal

Case 2

goal

goal goalimp

subgoal 1

Case 3

imp subgoal 2 goalimpimp
tactic

new goal

Case 1

imp goal

False Pimp

principle of explosion
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[       ], ,
Tactics 2

8

tactic

preprocesgoal

new goal

Case 1

imp goal

Case 2

goal

goal goalimp

Case 3

imp subgoal 2 goalimpimpsubgoal 1

: thm
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[       ]
Tactics 2
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tactic

preprocesgoal

Case 4 (failure = empty list)

goal goalimp
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Tactics 3
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fun tactic :: thm -> [ thm ]

inductsimpauto

[       ,       ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

Lazy

simp autoOR

THENinduct auto

REPEAT simp
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[     ,…]goal 1-1 [   ]

tactic1
[    ,    ,…]goal 1

tactic2

goal 2

Tactical (THEN)
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goal :: thm

THENtactic1 tactic2

tactic2

@[     ,…]@[…goal 2-1

tactic2

giant tactic?
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Giant tactic
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problem 2: Giant 
tactics are too slow!

problem 1: Default 
tactics are too weak!

problem 3: Sledgehammer and quick-check are not tactics!

giant tactic?

force autosimp fastOR OR OR
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Thens [Dynamic(Induct), Auto, IsSolved]
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(InductA ++ InductB ++ …) THEN auto THEN is_solved
goal

Dynamic ( Induct )

Auto

IsSolved

sequential 
combination 

(THEN)

runtime interpretation 
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Monadic interpretation
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goal

Dynamic ( Induct )

Auto

IsSolved

type tactic = thm -> thm Seq.seq type ‘a tactic =  ‘a -> ‘a monad

writer monad + non-deterministic monad

efficient proof 
scripts

 as “state”

pointer?

explicit tree construction?
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Sledgehammer as tactic
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They work on Proof.state not on thm.

problem 3: Sledgehammer and quick-check are not tactics!

 type ‘a tactic  = 'a -> ‘a nondet_state_monad

 type tactic = P.state -> P.state nondet_state_monad

                 persistant hammering

Thens [Dyn (Induct), Thens[Hammer+ , IsSolved]]

parallel

PThenOne



PSL and all that. | Yutaka Nagashima

try_hard: the default strategy
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strategy Basic =
  Ors [
       Auto_Solve,
       Blast_Solve,
       FF_Solve,
       Thens [IntroClasses, Auto_Solve],
       Thens [Transfer, Auto_Solve],
       Thens [Normalization, IsSolved],
       Thens [DInduct, Auto_Solve],
       Thens [Hammer, IsSolved],
       Thens [DCases, Auto_Solve],
       Thens [DCoinduction, Auto_Solve],
       Thens [Auto, RepeatN(Hammer), IsSolved],
       Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
        Thens [DInductTac, Auto_Solve],
        Thens [DCaseTac, Auto_Solve],
        Thens [Subgoal, Advanced],
        Thens [DCaseTac, Solve_Many],
        Thens [DInductTac, Solve_Many] ]



PSL:
Demo
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PSL and try-hard for Isabelle/HOL
The percentage of automatically proved obligations out of 1526 

proof obligations (timeout = 300s)
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try_smart
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PaMpeR: Proof Method 
Recommendation System

proof method 
recommendation::

(proof method * double) list

PaMpeR

strategy

proof goal

context

Proof
Data 
Base

assertions

proof goal

context

Regression
Algorithm

proof goal and context as a 
vector of boolean values

e.g. AFP & seL4

?

huge and complex

Type class mechanism?
Recursively defined constant?



PaMpeR:
Demo
Affine_Arithmetic/Affine_Approximation
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efficient tactic

PSL

tactic / sub-tool

proof goal context

Even better than PSL.

proof goal context

try_smart

small strategy

proof goal context

Future work: try-hard to try-smart

runtime tactic generation
state monad transformer

PaMpeR
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Isabelle/PSL on Github 
(https://github.com/data61/PSL)

Leave a star if you like.

Lean/PSL coming 
soon(?)

Isabelle/PaMpeR on 
Github (still work in progress)

I want you to use PSL / adopt the idea
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