
www.csiro.au

Towards Smart Proof
Search for Isabelle
PSL and all that
Yutaka Nagashima | Trustworthy System Research Group
March 2017

formerly known as

NICTA

until la
st week

• Click to edit Master text styles
• Second level
– Third level
– Fourth level
• Fifth level

Presentation title | Presenter name

Example proof at Data61

2

taken from:
https://github.com/seL4/seL4

Towards Smart Proof Search. | Yutaka Nagashima

PSL and try-hard for Isabelle/HOL
The percentage of automatically proved obligations out of 1526

proof obligations (timeout = 300s)

0%

25%

50%

75%

100%

try_hard sledgehammer

3

Part 1

73%

57%20%
16%

28% Part 2

Not specific to Isabelle!

Other ITPs / Logic Programming

Towards Smart Proof Search. | Yutaka Nagashima4

Isabelle/HOL before PSL

tactic / sub-tool

proof goal context

no sub-goal!subgoals

error-message
 It's blatantly clear
 You stupid machine, that what
 I tell you is true
 (Michael Norrish)

Towards Smart Proof Search. | Yutaka Nagashima5

PSL (Proof Strategy Language)

PSL

meta-tool
approach

programming
language

extensible
(Eisbach)

tactics
quickcheck

runtime tactic
generation

extensive
proof search

low memory
usage

efficient proof
generation

native Isabelle
proof script

sledgehammer

parallel
search

almost no code clutter!!

Towards Smart Proof Search. | Yutaka Nagashima6

Isabelle/HOL with PSL

strategy

proof goal

context

efficient tactic
proved theorem /

subgoals / message

PSL

tactic / sub-tool

proof goal context

Much less interaction with
Isabelle.

PSL and all that. | Yutaka Nagashima

Tactics 1

7

preprocesgoal

Case 2

goal

goal goalimp

subgoal 1

Case 3

imp subgoal 2 goalimpimp
tactic

new goal

Case 1

imp goal

False Pimp

principle of explosion

PSL and all that. | Yutaka Nagashima

[], ,
Tactics 2

8

tactic

preprocesgoal

new goal

Case 1

imp goal

Case 2

goal

goal goalimp

Case 3

imp subgoal 2 goalimpimpsubgoal 1

: thm

PSL and all that. | Yutaka Nagashima

[]
Tactics 2

9

tactic

preprocesgoal

Case 4 (failure = empty list)

goal goalimp

PSL and all that. | Yutaka Nagashima

Tactics 3

10

fun tactic :: thm -> [thm]

inductsimpauto

[, ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

Lazy

simp autoOR

THENinduct auto

REPEAT simp

Towards Smart Proof Search. | Yutaka Nagashima

[,…]goal 1-1 []

tactic1
[, ,…]goal 1

tactic2

goal 2

Tactical (THEN)

11

goal :: thm

THENtactic1 tactic2

tactic2

@[,…]@[…goal 2-1

tactic2

giant tactic?

Towards Smart Proof Search. | Yutaka Nagashima

Giant tactic

12

problem 2: Giant
tactics are too slow!

problem 1: Default
tactics are too weak!

problem 3: Sledgehammer and quick-check are not tactics!

giant tactic?

force autosimp fastOR OR OR

Towards Smart Proof Search. | Yutaka Nagashimanon-determinism

Thens [Dynamic(Induct), Auto, IsSolved]

13

(InductA ++ InductB ++ …) THEN auto THEN is_solved
goal

Dynamic (Induct)

Auto

IsSolved

sequential
combination

(THEN)

runtime interpretation

Towards Smart Proof Search. | Yutaka Nagashima

Monadic interpretation

14

goal

Dynamic (Induct)

Auto

IsSolved

type tactic = thm -> thm Seq.seq type ‘a tactic = ‘a -> ‘a monad

writer monad + non-deterministic monad

efficient proof
scripts

 as “state”

pointer?

explicit tree construction?

Towards Smart Proof Search. | Yutaka Nagashima

Sledgehammer as tactic

15

They work on Proof.state not on thm.

problem 3: Sledgehammer and quick-check are not tactics!

 type ‘a tactic = 'a -> ‘a nondet_state_monad

 type tactic = P.state -> P.state nondet_state_monad

 persistant hammering

Thens [Dyn (Induct), Thens[Hammer+ , IsSolved]]

parallel

PThenOne

PSL and all that. | Yutaka Nagashima

try_hard: the default strategy

16

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

PSL:
Demo

Towards Smart Proof Search. | Yutaka Nagashima

PSL and try-hard for Isabelle/HOL
The percentage of automatically proved obligations out of 1526

proof obligations (timeout = 300s)

0%

25%

50%

75%

100%

try_hard sledgehammer

18

Part 1

73%

57%20%
16%

28% Part 2
try_smart

Towards Smart Proof Search. | Yutaka Nagashima19

PaMpeR: Proof Method
Recommendation System

proof method
recommendation::

(proof method * double) list

PaMpeR

strategy

proof goal

context

Proof
Data
Base

assertions

proof goal

context

Regression
Algorithm

proof goal and context as a
vector of boolean values

e.g. AFP & seL4

?

huge and complex

Type class mechanism?
Recursively defined constant?

PaMpeR:
Demo
Affine_Arithmetic/Affine_Approximation

Towards Smart Proof Search. | Yutaka Nagashima21

efficient tactic

PSL

tactic / sub-tool

proof goal context

Even better than PSL.

proof goal context

try_smart

small strategy

proof goal context

Future work: try-hard to try-smart

runtime tactic generation
state monad transformer

PaMpeR

Towards Smart Proof Search. | Yutaka Nagashima22

Isabelle/PSL on Github
(https://github.com/data61/PSL)

Leave a star if you like.

Lean/PSL coming
soon(?)

Isabelle/PaMpeR on
Github (still work in progress)

I want you to use PSL / adopt the idea

www.csiro.au

Thank You
TS/ProofEngineering
Yutaka Nagashima  
Engineer

