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Introduction: Historical Perspective

1955 Logic Theorist

1956 Dartmouth Workshop - “Birth of AI”

1957 Perceptron

1958 LISP

1960 Davis-Putnam (DPLL 1962)

1965 Resolution/Unification

1970 Knuth-Bendix Completion

1972 PROLOG (1983 WAM)

1965-1975 MLP/back propagation

1980s Expert systems/Planners

1986 Decision tree learning

1990-1994 Superposition calculus

since 1997 Development of (E 0.3 January 1999)

since ca. 2005 “Deep Learning”

2008 E 1.0
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Deep Learning
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Deep Learning - Introduction

I Instance of machine learning
I Typical setting: Supervised learning

I Large number of pre-classified examples
I Examples are presented with expected output
I System learns classification/evaluation

I Result: Trained model

I Will provide classification/evaluation when
presented with new input
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Deep Learning - Methods

I Application of known techniques on a new scale

I Supervised learning (classification/evaluation/association)
I Artificial neural networks
I Gradient-based learning/back-propagation

I New:

I Big networks
I Complex network structure

I Multiple sub-networks
I Convolution layers
I Recurrence

I (Mostly) raw input
I Feature extraction is part of the learning
I Encoding is part of the learning
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Deep Learning - Successes

I AI used to have problems with “easy” tasks
I Deep learning successfully addresses these problems

I Image recognition
I Voice recognition
I Natural language translation
I Hard games

I Video games (real time)
I Go
I Poker

Deep learning drives resurgence of Artificial Intelligence!
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Deep Learning - Why Now?

I Popularity of Deep Learning

I . . . slowly growing since the mid 2000s
I . . . explosively growing since mid 2010s

I Driven by “big hardware”

I Clusters of computers
I . . . with clusters of GPUs

I Driven by “big data”

I Large training sets
I Large size of individuals

I Driven by Open Source

I Algorithms and models published under permissive licenses
I Many state-of-the-art machine learning libraries available
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Deep Learning - A Parable

Cast of Characters

Neanderthal Man

Sir Isaac Newton

Dr. Albert Einstein
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Neanderthal Learning
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Neanderthal Learning

Don’t sit 
under tree! 

Ugh!
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Neanderthal Learning

Don’t sit 
under tree! 

Ugh!

Round things 
fall down! 
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Enlightenment!

11



Enlightenment!

11



Enlightenment!

11



Enlightenment!

11



Enlightenment!

11



Enlightenment!

F = ma

F = G
m1m2

r2
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Compare and Contrast
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Compare and Contrast

Gµ⌫ =
8⇡G

c4
Tµ⌫

E = mc2
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Compare and Contrast

12



Compare and Contrast

Round things 
fall down! 

Ugh!

12



Compare and Contrast

What an 
interesting early 
human. I wonder 

what he thinks!
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Deep Learning Weaknesses

I Computationally expensive

I Big models use specialized hardware for training
I Even model application has non-trivial cost

I Knowledge is represented by large set distributed weights

I Low inherent level of abstraction
I Model is noisy

I Knowledge is largely inaccessible

I Hard to understand
I Hard to explain
I Hard to communicate

Unsupported claim (still true):
Deep learning alone will run into natural limits!
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Automated Theorem Proving
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Theorem Proving: Big Picture

Real World Problem

8X : human(X) ! mortal(X)
8X : philosopher(X) ! human(X)

philosopher(socrates)

?
|=

mortal(socrates)

Real World Problem Formalized Problem

ATP

Proof Search
Proof

Countermodel
Timeout

or

or
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Logics of Interest

I Propositional logic

I SAT-solving: relatively independent sub-field

I First-order logics

I . . . with free symbols
I . . . with free symbols and equality
I . . . with background theories
I . . . with free symbols and background theories

I Higher order logics

I Currently developing field
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Contradiction and Saturation

I Proof by contradiction

I Assume negation of conjecture
I Show that axioms and negated conjecture imply

falsity

I Saturation

I Convert problem to Clause Normal Form
I Systematically enumerate logical consequences of

axioms and negated conjecture
I Goal: Explicit contradiction (empty clause)

I Redundancy elimination

I Use contracting inferences to simplify or eliminate
some clauses

Search control problem: How and in which order do we
enumerate consequences?

Formula 
set

Equi- 
satisfiable 
 clause set

Clausifier

17



Contradiction and Saturation

I Proof by contradiction

I Assume negation of conjecture
I Show that axioms and negated conjecture imply

falsity

I Saturation

I Convert problem to Clause Normal Form
I Systematically enumerate logical consequences of

axioms and negated conjecture
I Goal: Explicit contradiction (empty clause)

I Redundancy elimination

I Use contracting inferences to simplify or eliminate
some clauses

Search control problem: How and in which order do we
enumerate consequences?

Formula 
set

Equi- 
satisfiable 
 clause set

Clausifier

17



Proof Search

# SZS status Theorem

# SZS output start CNFRefutation

fof(pel55_4, axiom, (![X1]:![X2]:(killed(X1,X2)=>hates(X1,X2))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_4)).

fof(pel55_1, axiom, (?[X1]:(lives(X1)&killed(X1,agatha))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_1)).

fof(pel55_3, axiom, (![X1]:(lives(X1)=>((X1=agatha|X1=butler)|X1=charles))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_3)).

fof(pel55_10, axiom, (![X1]:?[X2]:~(hates(X1,X2))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_10)).

fof(pel55_9, axiom, (![X1]:(hates(agatha,X1)=>hates(butler,X1))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_9)).

fof(pel55_5, axiom, (![X1]:![X2]:(killed(X1,X2)=>~(richer(X1,X2)))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_5)).

fof(pel55_8, axiom, (![X1]:(~(richer(X1,agatha))=>hates(butler,X1))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_8)).

fof(pel55_6, axiom, (![X1]:(hates(agatha,X1)=>~(hates(charles,X1)))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_6)).

fof(pel55_7, axiom, (![X1]:(X1!=butler=>hates(agatha,X1))), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_7)).

fof(pel55_11, axiom, (agatha!=butler), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55_11)).

fof(pel55, conjecture, (killed(agatha,agatha)), file(’/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/PUZ001+1.p’, pel55)).

fof(c_0_11, plain, (![X3]:![X4]:(~killed(X3,X4)|hates(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[pel55_4])])).

fof(c_0_12, plain, ((lives(esk1_0)&killed(esk1_0,agatha))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[pel55_1])])).

fof(c_0_13, plain, (![X2]:(~lives(X2)|((X2=agatha|X2=butler)|X2=charles))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[pel55_3])])).

cnf(c_0_14,plain,(hates(X1,X2)|~killed(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_11])).

cnf(c_0_15,plain,(killed(esk1_0,agatha)), inference(split_conjunct,[status(thm)],[c_0_12])).

cnf(c_0_16,plain,(X1=charles|X1=butler|X1=agatha|~lives(X1)), inference(split_conjunct,[status(thm)],[c_0_13])).

cnf(c_0_17,plain,(lives(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_12])).

fof(c_0_18, plain, (![X3]:~hates(X3,esk2_1(X3))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[pel55_10])])])).

fof(c_0_19, plain, (![X2]:(~hates(agatha,X2)|hates(butler,X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[pel55_9])])).

fof(c_0_20, plain, (![X3]:![X4]:(~killed(X3,X4)|~richer(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[pel55_5])])])).

fof(c_0_21, plain, (![X2]:(richer(X2,agatha)|hates(butler,X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[pel55_8])])])).

fof(c_0_22, plain, (![X2]:(~hates(agatha,X2)|~hates(charles,X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[pel55_6])])])).

cnf(c_0_23,plain,(hates(esk1_0,agatha)), inference(spm,[status(thm)],[c_0_14, c_0_15])).

cnf(c_0_24,plain,(esk1_0=charles|esk1_0=butler|esk1_0=agatha), inference(spm,[status(thm)],[c_0_16, c_0_17])).

cnf(c_0_25,plain,(~hates(X1,esk2_1(X1))), inference(split_conjunct,[status(thm)],[c_0_18])).

cnf(c_0_26,plain,(hates(butler,X1)|~hates(agatha,X1)), inference(split_conjunct,[status(thm)],[c_0_19])).

fof(c_0_27, plain, (![X2]:(X2=butler|hates(agatha,X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[pel55_7])])).

cnf(c_0_28,plain,(~richer(X1,X2)|~killed(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_20])).

cnf(c_0_29,plain,(hates(butler,X1)|richer(X1,agatha)), inference(split_conjunct,[status(thm)],[c_0_21])).

cnf(c_0_30,plain,(~hates(charles,X1)|~hates(agatha,X1)), inference(split_conjunct,[status(thm)],[c_0_22])).

cnf(c_0_31,plain,(esk1_0=agatha|esk1_0=butler|hates(charles,agatha)), inference(spm,[status(thm)],[c_0_23, c_0_24])).

cnf(c_0_32,plain,(~hates(agatha,esk2_1(butler))), inference(spm,[status(thm)],[c_0_25, c_0_26])).

cnf(c_0_33,plain,(hates(agatha,X1)|X1=butler), inference(split_conjunct,[status(thm)],[c_0_27])).

cnf(c_0_34,plain,(hates(butler,X1)|~killed(X1,agatha)), inference(spm,[status(thm)],[c_0_28, c_0_29])).

cnf(c_0_35,plain,(esk1_0=butler|esk1_0=agatha|~hates(agatha,agatha)), inference(spm,[status(thm)],[c_0_30, c_0_31])).

cnf(c_0_36,plain,(agatha!=butler), inference(split_conjunct,[status(thm)],[pel55_11])).

cnf(c_0_37,plain,(esk2_1(butler)=butler), inference(spm,[status(thm)],[c_0_32, c_0_33])).

fof(c_0_38, negated_conjecture, (~(killed(agatha,agatha))), inference(assume_negation,[status(cth)],[pel55])).

cnf(c_0_39,plain,(hates(butler,esk1_0)), inference(spm,[status(thm)],[c_0_34, c_0_15])).

cnf(c_0_40,plain,(esk1_0=agatha|esk1_0=butler), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_35, c_0_33]), c_0_36])).

cnf(c_0_41,plain,(~hates(butler,butler)), inference(spm,[status(thm)],[c_0_25, c_0_37])).

fof(c_0_42, negated_conjecture, (~killed(agatha,agatha)), inference(fof_simplification,[status(thm)],[c_0_38])).

cnf(c_0_43,plain,(esk1_0=agatha), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_40]), c_0_41])).

cnf(c_0_44,negated_conjecture,(~killed(agatha,agatha)), inference(split_conjunct,[status(thm)],[c_0_42])).

cnf(c_0_45,plain,($false), inference(sr,[status(thm)],[inference(rw,[status(thm)],[c_0_15, c_0_43]), c_0_44]), [’proof’]).

# SZS output end CNFRefutation
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Proof Search

# SZS output start CNFRefutation

fof(pel55_4, axiom, (![X1]:![X2]:(killed(X1,X2)=>hates(X1,X2))),

file(’PUZ001+1.p’, pel55_4)).

...

fof(pel55, conjecture, (killed(agatha,agatha)),

file(’PUZ001+1.p’, pel55)).

...

fof(c_0_12, plain, ((lives(esk1_0)&killed(esk1_0,agatha))),

inference(skolemize,[status(esa)],

[inference(variable_rename,[status(thm)],[pel55_1])])).

...

cnf(c_0_14,plain,(hates(X1,X2)|~killed(X1,X2)),

inference(split_conjunct,[status(thm)],[c_0_11])).

...

cnf(c_0_23,plain,(hates(esk1_0,agatha)),

inference(spm,[status(thm)],[c_0_14, c_0_15])).

...

cnf(c_0_45,plain,($false),

inference(sr,[status(thm)],[inference(rw,[status(thm)],

[c_0_15, c_0_43]), c_0_44]), [’proof’]).

# SZS output end CNFRefutation 19



Proof Search and Choice Points

I First-order logic is semi-decidable

I Provers search for proof in infinite space
I . . . of possible derivations
I . . . of possible consequences

I Major choice points of Superposition calculus:

I Term ordering (which terms are bigger)
I (Negative) literal selection
I Selection of clauses for inferences (with the given clause algorithm)
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Some Properties of ATP

I Individual operations cheap(ish)

I Computing one consequence is no problem
I Computing 1000 consequences is no problem

I But: Large/infinite search space

I 1000 consequences is usually enough for a proof
I . . . but rarely enough to find it!

I Combinatorial explosion

I High branching factor
I Simplification helps a lot
I . . . but not nearly enough!
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Big Data and ATP

I Automated tuning of theorem provers since
the 1990s
I Examples:

I E-SETHEO schedules
I E’s automatic auto mode
I Vampire’s black magic box

I Based on performance only

I Reason: Proof search traces are big!

I . . . really big!
I . . . and theorem provers are memory-limited

anyways

I Ca. 2014: Something wonderful happens

I Hardware finally catches up
I Implementation techniques improve

We can finally afford to look DEEPLY into proofs!
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Deep Reasoning
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Vision: Search Control

I Long-term goal: Extract search control knowledge

I . . . from examples of successful proof searches
I . . . from examples of failing proof searches

I Primary use case: Clause selection

I Which of the current candidate consequences should
be considered first?

I Extract good/bad search decisions from proof
protocols

I It’s happening!

I Premise selection (Urban, Irving, et al)
I Clause Selection (Loos, Irvin, Kaliszyk et al) - see

next session
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Vision: Automated Scientist

I Setting: Background theory+examples

I Background theory in explicit logic
I Examples

I Process

I Deep learner hypothesizes relationship
I Hypothesis is converted to symbolic logic (Magic happens here)
I ATP system checks hypotheses for consistency with background

theory
I Failure: Abduction can refine hypothesis
I Success: Tentatively add hypothesis to theory

I ATP system generates new consequences to test on examples
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Vision: Fully Interactive AI

I Setting: Rational agent interacting with environment
I Deep learner:

I Vision
I Voice
I Language
I Suggest actions

I Symbolic reasoning system

I Hard-coded world knowledge
I Hard-coded constraints on behavior

26



The End
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Conclusion

I Deep learning and symbolic reasoning are complementary
I Hardware is now finally sufficient for both

I . . . even in combined systems

I We’re looking forward to an interesting future

And when the time comes to decide whether to switch on the new,
improved AI that is vastly superior to humans and will eliminate all
errors, a couple of imperial bureaucrats will gather round a table, and
one will say: “We’ve already paid for it, so let’s switch it on”. . .

Marc Uwe Kling (as “the Kangaroo”)
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Thank you!
Questions? Discussion?
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