
Proof Search in Conflict Resolution  
Lifting CDCL  

(Conflict-Driven Clause Learning)  
to First-Order Logic

Bruno Woltzenlogel Paleo

joint work with:
Daniyar Itegulov (ITMO, St. Petersburg, Russia) 

Ezequiel Postan (National University of Rosario, Argentina) 
John Slaney (Australian National University) 

modus ponens

hypothetical reasoning

resolution

?

sat-solver

Results of CASC (2016)

First/Higher-Order  
Theorem Prover

Very Sketchy Anatomy
of Winning ATPs

Let’s Open the Black Box!

Implication/Conflict Graphs: Unit Propagation

Unit-Propagating Resolution

Implication/Conflict Graphs: Unit Propagation

c2 : R c1 : ¬P c3 : ¬R _ P _Q
Q

u
c1 c4 : P _ ¬Q

¬Q u

? c

Implication/Conflict Graphs: Decision Literals

Implication/Conflict Graphs  
 

Backtrack and Iterate…

Implication/Conflict Graphs: Decision Literals

Decision literals behave like assumptions

learning a clause is like  
applying natural deduction’s  

negation introduction rule

[P]
....
?
¬P

¬I

Decisions and Conflict-Driven Clause Learning

This can also be
a non-tree DAG

“cl” can be seen as a chain of  
negation/implication introductions

¬P ⌘ P ! ?

First-Order Logic

Propositional Logic
CDCL

First-Order Unit-Propagation

c1 : P (z) _Q
c2 : P (y) _ ¬Q
c3 : ¬P (a) _Q
c4 : ¬P (b) _ ¬Q

P (x)

{x\a}

{x\b}

c5 : ¬P (a) _ ¬P (b)

c5 : ¬P (x)

Which clause should we learn?

?

First-Order Conflict-Driven Clause Learning

Refutational Completeness
(by simulation of the resolution calculus)

Refutational Completeness
(by simulation of the resolution calculus)

The simulation is linear

Soundness
(via simulation by natural deduction)

Step 1:  
ground the conflict resolution proof

(expand DAG to tree when necessary)

Step 2:  
simulate each unit propagating resolution or conflict  

by a chain of implication eliminations.  
simulate each conflict driven clause learning inference  

by a chain of negation/implication introductions.

Conflict Resolution = “Chained” Natural Deduction with Unification

A Side-Remark: Linear Simulation of Splitting

Now we could even split when

� _�
�....
?

�....
?

JAR Paper

JAR Paper accepted in January 2017

A Theorem Prover is much
more than a Logical Calculus

Logical Calculus

Refinements

Search Algorithm

Heuristics

Implementation  
Techniques

this talk's
focus

4 "evils"
that attack
first-order

logic  
but not

propositional
logic

Pandora’s Box

1: Non-Termination of First-Order Unit Propagation

Note:
this problem will not occur in some  

decidable fragments (e.g. Bernays-Schönfinkel)

c5 : P (a)

c6 : ¬P (x) _ P (f(x))

c6
P (a) P (f(a)) P (f(f(a)))

c6 c6 …

Solutions

2) Bound the propagation…
A) … by the depth of the propagation
B) … by the depth of terms occurring

in propagated literals

1) Ignore the non-termination.

and make decisions when the bound is reached,  
and then increase the bound.

2: Absence of Uniformly True Literals in Satisfied Clauses

{p(X) _ q(X),¬p(a), p(b), q(a),¬q(b)}

p(X)

q(X)

is a satisfiable clause set

but there is no model where

is uniformly true
or

is uniformly true

This makes it harder to detect when  
all clauses are already satisfied  

(and, therefore, that we can stop the search)

Solutions

2) Keep track of “useless decisions”  
 and consider a clause to be satisfied  

 when all its literals are useless decisions.

1) Ignore the problem, and accept that  
 some satisfiable problems will not be solved.

(not so bad, if we focus on unsatisfiable problems)

{p(X) _ q(X),¬p(a), p(b), q(a),¬q(b)}

p(X) q(X)and are useless decisions

they lead to subsumed conflict-driven learned clauses

3: Propagation without Satisfaction

p(X) _ q(X)

q(a)

¬p(a)In a model containing

The clause becomes propagating

and propagates into the model

but having q(a) in the model
does not make the clause satisfied

Even after propagation  
a clause may be needed for other propagations

Solution

1) Check whether the propagating clause  
became uniformly satisfied.

If so, then it won’t be needed in future propagations

4: Quasi-Falsification without Propagation

p(X) _ q(X) _ r(X)

r(X)

¬p(a) ¬q(b)In a model containing and

the clause

is quasi-falsified
(because its first two literals are false)

but cannot be propagated

This prevents direct lifting of  
two watched literals data structure

Moreover, detection of false literals needs  
to take unification into account

Solution
For each literal L occurring in a clause,  

keep a hashset of literals in the model that are duals of
instances of L.

If all literals of a clause except one have a non-empty hashset
associated with it, the clause is quasi-falsified.

This allows quicker detection of quasi-falsified clauses  
in a manner that resembles two-watched literals

The set of quasi-falsified clauses is an over-approximation  
of the set of clauses that can propagate

Implementation

The Scavenger 0.1 Theorem Prover
Implemented in

by me and two Google Summer of Code students:
 Daniyar Itegulov and Ezequiel Postan

http://gitlab.com/aossie/ScavengerOpen-Source:

GSoC stipends available this year again!

www.aossie.org
Deadline: 3 April

http://gitlab.com/aossie/Scavenger
http://www.aossie.org

Basic Data Structures

terms and formulas are simply-typed lambda expressions

clauses are immutable sequents  
(antecedent and succedent are sets)

future work:  
extend Conflict Resolution and Scavenger

to higher-order logic

Proofs are DAGs of Proof Nodes

each inference rule is a small class

each inference rule is a small class

Main Search Loop: 3 variants

1. EP-Scavenger: ignore non-termination of unit-propagation 
(168 lines) 

2. PD-Scavenger: bound propagation by propagation depth  
(342 lines) 

3. TD-Scavenger: bound propagation by term depth  
(176 lines)

Important Missing Features

proper backtracking:  
Scavenger currently restarts and throws the model away  

after every conflict

decision literal selection heuristics:  
Scavenger currently selects the  

first literal from a randomised queue

(Urgent Future Work)

Preliminary
Experiments

TPTP Unsat EPR CNF problems without Equality

PD TD

EP

V

EOtter

TPTP Unsat CNF problems without Equality

PD
TD

EP
V

E

Otter V

What about AI/ML?
CDCL and CR

selection of decision literals actions

learned clause punishment for  
(set of) bad decisions

Reinforcement Learning

heuristics selecting  
decision literals with  

highest scores

policy selecting  
actions with  
highest values

current model state

Conclusions

modus ponens

hypothetical reasoning

resolution

?
first-order CDCL

`1 . . . `n `1 ! . . . ! `n ! `
`�

u(�)

unit-resulting resolution

Performance

Approaches

Resolution/Superposition  
Provers 

after 
decades 

of engineering
Scavenger

after 6 months 
of engineering

CR Provers
after years

of engineering

Immediate Future Work:
More careful backtracking  

and restarting

Hopefully

Thank you!

