Proof Search in Contlict Resolution
Lifting CDCL
(Contflict-Driven Clause Learning)
to First-Order Logic

Bruno Woltzenlogel Paleo

joint work with:
Daniyar Itegulov (ITMO, St. Petersburg, Russia)
Ezequiel Postan (National University of Rosario, Argentina)
John Slaney (Australian National University)

modus ponens

A A— B
B

resolution

Fl — Al,A A,,FQ — AQ

(Fl, Al — FQ, AQ)U

hypothetical reasoning

A

B
A— B

?

Results of CASC (2016)

Solved/soo

Av. CPU Tim

Solutions

Solved/soo

Av. CPU Time

Solutions

Solvedsso

Av. CPU Time

Solved/soo

Av. CPU Tim

Solutions

Solved3oo

Av. CPU

Solutions

Solved/soo

Av. WC Time

Solutions

LEO-1II | Leo+III | Leo-III | Isabelle
1.7.0 1.0 1.0 2015
23 8/500 89/500 74/500 356/500
20.93 48.37 42.79 81.08
23 1/500 88/500 74/500 0/500
CVC4 | Beagle | Princess
TFF-1.5.1 09.47 160606
343500 300500 342500
572 18.76 17.59
343500 300500 271500
Princess | CVC4
160606 TFN-1.5
850 850
1.44 22.90
E CVC4 | iProver |leanCoP | Prover9 | Geo-III
2.0 FOF-1.5.1 25 22 1109a 2016C
392/500 329/500 278/500 168/500 101/500 54/500
30.87 35.04 30.82 77.94 29.99 41.73
392500 328500 274500 168500 98500 54500
iProver | Nitpick | CVC4 | Geo-1I1 E Refute
SAT-25 2015 FNT-15.1 2016C FNT-2.0 2015
200/300 1 39/300 96/300 76/300 70/300 5 8/300
30.28 37.86 22.43 13.69 16.31 69.09
200/300 1 39/300 96/300 76/300 70/300 0/300
Vampire E Geo-1I1
4.0 2.0 2016C
222/300 1 0 1 /300 1 0/300
35.35 21.85 55.88
Vampire E iProver |Prover9P]
LTB-4.1 LTB-2.0 LTB-25 1.0
396600 305600 298600 851200
8.05 12.56 35.07 1441
396600 305600 298600 851200

Very Sketchy Anatomy
of Winning ATPs

First/Higher-Order
Theorem Prover

L et's Open the Black Box!

Implication/Contlict Graphs: Unit Propagation

C1 - P C]_

: C
P9
CQ'R ~~~~~

CgZ—IR\/P\/Q \
C C3 Y A\
wirve Ry

Unit-Propagating Resolution

0. 01NV ...Vl VY

u

Implication/Contlict Graphs: Unit Propagation

ci: P Cl@ C4.
CQIR ~~~~~~~~~
cs: RV PVQ . \c
2

C4ZP\/ﬁQ R

Implication/Conflict Graphs: Decision Literals

e @t
CQZP\/ﬂQ
c3:PV(Q \63 ___________
C4Z_IP\/_IQ

C5Z_IP

Implication/Contlict Graphs

Backtrack and lterate. ..

Implication/Conflict Graphs: Decision Literals

e @t
CQZP\/ﬂQ
c3:PV(Q \63 ___________
C4Z_IP\/_IQ

C5Z_IP

Decision literals behave like assumptions

. .. P]
learning a clause is like :

applying natural deduction’s L

negation introduction rule 5

Decisions and Conflict-Driven Clause Learning

YA

This can also be
a non-tree DAG

1 ’
iv... v, ©

“cl” can be seen as a chain of
negation/implication introductions

-P=P = 1

First-Order Logic

Propositional Logic

First-Order Unit-Propagation

. P(z) V

flj(y) Vg@

;ﬂllj(a) VQ
(b) V —-Q

Whi
iIch
clau
se should we
lea
rn?

}Q?

Cy . _IP(CL) V _lP(b)

First-Order Conflict-Driven Clause Learning

Ak 2k
(0%7 y Jvlnl) : (0-?7 y O-Q’Ln
i

(bro1 V...V Loy, YV ooV (Upo V...V Lol)

Refutational Completeness

(by simulation of the resolution calculus)

1 x
btV ...Vl VY NN LN
(b1V ..V, NV V...Vl) o

:901 o :902

Gt Gt V.. VeV (2 R 17 L ZA VR VR v/

r(o)

; u(e) u(e)

Y (o)

L

1
R T AR AT

Refutational Completeness

(by simulation of the resolution calculus)

¢
(N NN .. N,

(EN LN .. Ny o

v

.

f(o)

/

1 1 .
ceo)t oy 6112 ... [€,,_11™ £V E VeV ...V Ly

1
P R s LS

1
LNV eV ...Vl o

1

cl

The simulation is linear

c(o)

Soundness

(via simulation by natural deduction)

Step 1:
ground the conflict reso
(expand DAG to tree whe

Step 2:

ution proof

N necessary)

simulate each unit propagating resolution or conflict
by a chain of implication eliminations.
simulate each contlict driven clause learning inference
by a chain of negation/implication introductions.

A Side-Remark: Linear Simulation of Splitting

T\ A 4] ...F 4]0 TVA .
I’ A\ §

o o J_ 1

‘ ‘ » A c

1L i

Now we could even split when
var(l) Nwvar(A) # 0

JAR Paper accepted in January 2017

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Conflict Resolution

a First-Order Resolution Calculus with
Decision Literals and Conflict-Driven Clause Learning

John Slaney - Bruno Woltzenlogel Paleo

A Theorem Prover Is much
more than a Logical Calculus

Implementation
Techniques

this talk's

Heuristics - -
focus

Refinements

Logical Calculus

I * * I
0‘ ‘0
0" ’.0
0‘ ‘0
0” ”0
* ‘0

-

Pandora’s Box

4 "evils’
that attack
first-order

[e]e]le

but not
oropositional

[e]e]le

1: Non-Termination of First-Order Unit Propagation

Cltp\/Q
. P
CQZP\/_IQ = (a)
cs : PV ce : 7 P(x)V P(f(x))
C4Z_IP\/_IQ
C C C
5P (a)———{P(f(a)}— » ° .

Note:
this problem will not occur in some
decidable fragments (e.g. Bernays-Schdnfinkel)

Solutions

1) Ignore the non-termination.

2) Bound the propagation...
A) ... by the depth of the propagation

B) ... by the depth of terms occurring
INn propagated literals

and make decisions when the bound Is reached,
and then increase the bound.

2: Absence of Uniformly True Literals in Satisfied Clauses

{p(X) Vq(X),—p(a),p(b),q(a), ~q(b)}

IS a satisfiable clause set

but there 1Is no model where

p(X) is uniformly true
or
q(X) is uniformly true
This makes it harder to detect when

all clauses are already satisfied
(and, therefore, that we can stop the search)

Solutions

1) Ignore the problem, and accept that
some satisfiable problems will not be solved.
(not so bad, if we focus on unsatisfiable problems)

2) Keep track of “useless decisions”
and consider a clause to be satisfied
when all its literals are useless decisions.

{p(X) Vq(X),—p(a),p(b),q(a), 7q(b)}
p(X) and q(X) are useless decisions

they lead to subsumed conflict-driven learned clauses

3: Propagation without Satisfaction
In a model containing —p(a)

The clause p(X) V ¢(X) becomes propagating

and propagates ¢(a) into the model

but having ¢(a) in the model

does not make the clause satisfied

Even after propagation
a clause may be needed for other propagations

Solution

1) Check whether the propagating clause
became uniformly satisfied.

It so, then it won't be needed Iin future propagations

: Quasi-Falsification without Propagation
In a model containing —p(a) and —q(b)

the clause
p(X) Vq(X)Vr(X)
IS quasi-falsitied
(because its first two literals are false)

but r(X') cannot be propagated

Moreover, detection of false literals needs
to take unification into account

This prevents direct lifting of
two watched literals data structure

Solution

For each literal L occurring in a clause,
keep a hashset of literals in the model that are duals of
instances of L.

It all literals of a clause except one have a non-empty hashset
associated with it, the clause Is quasi-talsified.

This allows quicker detection of quasi-falsified clauses
IN a manner that resembles two-watched literals

The set of quasi-talsified clauses is an over-approximation
of the set of clauses that can propagate

Implementation

The Theorem Prover
Implemented in !Scala

by me and two Google Summer of Code students:
Daniyar ltegulov and Ezequiel Postan

Open-Source: http://gitlab.com/aocssie/Scavenger

GSoC stipends available this year again!

WWW.a0SSl|e.org

o Deadline: 3 April {}SS

SLanmer Of COde AA

http://gitlab.com/aossie/Scavenger
http://www.aossie.org

Basic Data Structures

terms and formulas are simply-typed lambda expressions

future work:
extend Conflict Resolution and Scavenger
to higher-order logic

clauses are iImmutable sequents
(antecedent and succedent are sets)

Prootfs are DAGs of Proof Nodes

abstract class CRProofNode extends ProofNode[Clause, CRProofNode] {
def findDecisions(sub: Substitution): Clause = {
this match {

case Decision(literal) =>
Isub(literal)

case conflict @ Conflict(left, right) =>
left.findDecisions(conflict.leftMgu) union right.findDecisions(conflict.rightMgu)

case UnitPropagationResolution(left, right, _, leftMgus, _) =>
// We don't need to traverse right premise, because it's either initial clause or conflict driven clause

left
.zip(leftMgus)
.map {
case (node, mgu) => node.findDecisions(mgu(sub))
3
.fold(Clause.empty)(_ union _)
case _ =>

Clause.empty

each inference rule 1s a small class

class Axiom(override val conclusion: Clause) extends CRProofNode {
def auxFormulasMap = Map()

def premises = Seq()
}

case class Decision(literal:_Literal) extends CRProofNode {
override def conclusion: Clause = literal.toClause

override def premises: Seqg[CRProofNode] = Seqg.empty
}

val conflictDrivenClause = conflict.findDecisions(Substitution.empty)
override def conclusion: Clause = conflictDrivenClause
override def premises: Seqg[CRProofNode] = Seq(conflict)

}

each inference rule 1s a small class

case class UnitPropagationResolution private (left: Seg[CRProofNode], right: CRProofNode,
desired: Literal, leftMgus: Seg[Substitution], rightMgu: Substitution) extends CRProofNode {
require(left.forall(_.conclusion.width == 1), "All left conclusions should be unit")
require(left.size + 1 == right.conclusion.width,
"There should be enough left premises to derive desired")

override def conclusion: Clause = desired

override def premises: Seq[CRProofNode] = left :+ right
}

case class Conflict(leftPremise: CRProofNode, rightPremise: CRPFbofNode)
extends CRProofNode {
require(leftPremise.conclusion.width == 1, "Left premise should be a unit clause")
require(rightPremise.conclusion.width == 1, "Right premise should be a unit clause")

private val leftAux = leftPremise.conclusion.literals.head.unit
private val rightAux = rightPremise.conclusion.literals.head.unit

val (Seq(leftMgu), rightMgu) = unifyWithRename(Seq(leftAux), Seq(rightAux)) match {
case None => throw new Exception("Conflict: given premise clauses are not resolvable")
case Some(u) => u

}

override def premises = Seq(leftPremise, rightPremise)
override def conclusion: Clause = Clause.empty

Main Search Loop: 3 variants

1. EP-Scavenger: ignore non-termination of unit-propagation
(168 lines)

2. PD-Scavenger: bound propagation by propagation depth
(342 lines)

3. TD-Scavenger: bound propagation by term depth
(176 lines)

Important Missing Features

(Urgent Future Work)

proper backtracking:

Scavenger currently restarts and throws the model away
after every conflict

decision literal selection heuristics:
Scavenger currently selects the
first literal from a randomised queue

Preliminary
EXperiments

300 -
275 -
250 -
225 -
200 -
175 -
9, 150 -

g 125

= 100
75 -
50 -
25 -

seconds)

0 50 100 150 200 250 300 350 400 450 500 550
Number of Problems

— LEO-II-1.7.0 — PD-Scavenger — ZenonModulo-0.4.1 Geo-Il1-2016C — EP-Scavenger — TD-Scavenger — S0S-2.0
— Otter-3.3 — Beagle-SAT-0.9.47 E-KRHyper-1.4 — Zipperpin-FOF-0.4 — Beagle-0.9.47 Prover9-1109a — Metis-2.3
— DarwinFM-1.4.5 — SNARK-20120808r022 — Bliksem-1.12 — PEPR-0.0ps =~ GrAnDe-1.1 — CV(C4-FOF-1.5.1

— E-Darwin-1.5 Paradox-3.0 ET-0.2 E-2.0 —Z34.4.1 Darwin-1.4.5 VampireZ3-1.0 Vampire-4.1

— Vampire-SAT-4.1 — Vampire-4.0 — Vampire-SAT-4.0 — iProver-2.5

TPTP Unsat EPR CNF problems without Equality

Y

300 - e — PD EP Otter v

275 |- e s / ---------------------- N - S
250 | | D -

225 -
200 -
175 -
9, 150

g 125-

= 100 -
75
50 1
25

seconds)

0 250 500 750 1,000 1,250 1,500
Number of Problems

— PEPR-0.0ps — GrAnDe-1.1 — DarwinFM-1.4.5 Paradox-3.0 ZenonModulo-0.4.1 — LEO-II-1.7.0 — TD-Scavenger

— PD-Scavenger Geo-I11-2016C — EP-Scavenger — Metis-2.3 — Z34.4.1 — Zipperpin-FOF-0.4 — Otter-3.3

— Beagle-SAT-0.9.47 — Bliksem-1.12 E-KRHyper-1.4 S0S-2.0 — CVC4-FOF-1.5.1 — SNARK-20120808r022

— Beagle-0.9.47 — E-Darwin-1.5 Prover9-1109a Darwin-1.4.5 — Vampire-SAT-4.1 — Vampire-SAT-4.0 — iProver-2.5
VampireZ3-1.0 ET-0.2 E-2.0 Vampire-4.1 — Vampire-4.0

TPTP Unsat CNF problems without Equality

What about Al/ML?

CDCL and CR < Reinforcement Learning

current model state
selection of decision literals actions
learned clause punishment for

(set of) bad decisions

heuristics selecting policy selecting
decision literals with actions with
highest scores highest values

Conclusions

modus ponens

A A— B
B

resolution
I'y — Al,A A’,Fz — AQ
(I'1,A1 = T'g,Ag)o

unit-resulting resolution

v ... b, b1 —...— b, =/

Vo

hypothetical reasoning

A

B
A— B

first-order CDCL

1
41
. 1 n
> (01,--,0 N
1 1 . Cli
n n
br01,.. 010, oy €yl hpoy, — L

Performance

CR Provers
after years
/ of engineering

Hopetully

Resolution/Superposition
Provers

after
decades \
of engineering

Scavenger
after 6 months
of engineering

Approaches

Immediate Future Work:

More careful backtracking
and restarting

Thank you!

