Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Proof Engineering of Higher Order Logic Collaboration, Translation, Checking and Retrieval

Robert White (Shuai Wang)

 $\mathsf{ILLC}/\mathsf{INRIA} \to \mathsf{CNRS}$

AITP'16

Outline

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

1 Introduction

- Higher Order Logic
- HOL Kernel
- Inference Rules

2 Proof Collaboration

- OpenTheory
- Version 5 & 6
- 3 Proof Translation and Proof Checking
- 4 Proof Retrieval Engine: ProofCloud

◆□▶◆□▶◆□▶◆□▶ □ のへで

5 Conclusion and Future Work

Higher Order Logic

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction

Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- Simple type theory (STT) is also known as Higher order logic (HOL).
- HOL = simply typed λ-Calculus + boolean types + axioms + inference rules.
- Most mathematical objects/theories can be expressed in HOL.
- Interactive and automatic theorem provers & proof checkers for formal mathematics.
- HOL Light, ProofPower, HOL4, HOL Zero ... [HOL family].
- The first talk by Tom Hales: Kepler Conjecture

Kernel

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

HOL syntax:

type variables α, β type operatorsptypes $A, B ::= \alpha \mid p(A_1, \dots, A_n)$ term variablesx, yterm constantscterms $M, N ::= x \mid \lambda x : A.M \mid MN \mid c$

Polymorphic Type:

 $=: \alpha \rightarrow \alpha \rightarrow o$

▲□▶▲□▶▲□▶▲□▶▲□▶ □ のへで 4/29

Primitive Inference Rules

_

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Structural	A A A A A A A A A A
λ Calculus	$\frac{\Gamma \vdash A = B}{\Gamma \vdash \lambda x.A = \lambda x.B} ABS$ $\frac{\Gamma \vdash \lambda x.A = \lambda x.B}{(\lambda x.A)x = A} BETA$
Instantiation	$\frac{\Gamma[\mathbf{x}_{1}, \dots, \mathbf{x}_{n}] \vdash A[\mathbf{x}_{1}, \dots, \mathbf{x}_{n}]}{\Gamma[\mathbf{x}_{1}, \dots, \mathbf{x}_{n}] \vdash A[\mathbf{x}_{1}, \dots, \mathbf{x}_{n}]} INST$ $\frac{\Gamma[\alpha_{1}, \dots, \alpha_{n}] \vdash A[\alpha_{1}, \dots, \alpha_{n}]}{\Gamma[\gamma_{1}, \dots, \gamma_{n}] \vdash A[\gamma_{1}, \dots, \gamma_{n}]} INST_TYPE$
Bi-implication	$ \begin{array}{c c} \hline \Gamma \vdash A = B & \Delta \vdash A \\ \hline \Gamma \cup \Delta \vdash B \\ \hline \Gamma \vdash A & \Delta \vdash B \\ \hline (\Gamma \setminus \{B\}) \cup \Delta \setminus \{A\}) \vdash A = B \end{array} DEDUCTANTISYMRULE $
Equality	$ \begin{array}{c} \hline \vdash A = A \\ \hline \vdash A = B \\ \hline \Gamma \vdash A = B \\ \hline \Box \cup \Delta \vdash A(C) = B(D) \\ \hline \Gamma \vdash A = B \\ \hline \Box \cup \Delta \vdash A = C \\ \hline \end{array} MK_COMB \\ \hline TRANS \\ \hline \end{array} $

▲□▶▲舂▶▲≧▶▲≧▶ 差 釣�? 5/29

Dependency

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Figure: Constants and Connectives Dependency Analysis

(日)

6/29

OpenTheory

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboratior

OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- HOL family: HOL Light, ProofPower, HOL4, Isabelle
- Need a platform to reuse proofs from different systems.
- OpenTheory has a standard format of proofs (*.art).
- Export proofs and import proofs (in article files).
- OpenTheory HOL Light:
 - a modified version of HOL Light which allows import and export of proofs.
- http://www.gilith.com/research/opentheory/

Packages and Dependency

OpenTheory Kernel

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

$$\begin{array}{c} \hline F + t = t & refl t & \hline \{t\} \vdash t & assume \varphi & \hline \Delta \vdash \varphi & \Gamma \vdash \varphi = \psi \\ \hline \Gamma \cup \Delta \vdash \psi & assThm v & \hline \Gamma \vdash f = g & \Delta \vdash x = y \\ \hline \Gamma \vdash (\lambda v.t) = (\lambda v.u) & absThm v & \hline \Gamma \cup \Delta \vdash f x = gy & appThm \\ \hline \hline \Gamma \cup (\lambda \lor v) & (\Delta \vdash \varphi) & f x = \varphi = \psi \\ \hline \hline (\Gamma \setminus \{\psi\}) \cup (\Delta \setminus \{\varphi\}) \vdash f x = \varphi = \psi & deductAntisym & \hline \Gamma \vdash \varphi \\ \hline \hline (\lambda v.t)u = t[u/v] & betaConv((\lambda v.t)u) & \hline c = t & defineConstct \\ \hline \vdash \varphi t & equal to T = 0 & equal to T \\ \hline \hline (L \to V) & I = 0 \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \Gamma = 0 & equal to T \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \hline \Gamma = 0 & equal to T \\ \hline \Gamma = 0$$

 $\vdash abs(rep a) = a \qquad \vdash (rep(abs r) = r) = \varphi r \qquad defineTypeOp \ n \ abs \ rep \ vs$

Figure: Primitive Inference Rules of OpenTheory 5

OpenTheory 5 & 6

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory <u>Version 5 & 6</u>

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Commands	Updated/New
proveHyp	new
trans	new
sym	new
defineConstList	new
hdTl	new
defineTypeOp	updated
pragma	new

Table: Differences between commands of version 5 and version 6

OpenTheory 5 & 6

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

$$\begin{array}{c} \frac{\Gamma \vdash \varphi \quad \Delta \vdash \psi}{\Gamma \cup (\Delta \setminus \{\varphi\}) \vdash \psi} \ proveHyp \\ \frac{\Gamma \vdash s = t \quad \Delta \vdash t = u}{\Gamma \vdash \varphi = \psi} \ trans \\ \frac{\Gamma \vdash \varphi = \psi}{\Gamma \vdash \psi = \varphi} \ sym \\ \hline + abs(rep a) = a \qquad \vdash \forall r.(rep(abs r) = r)) \end{array} defineTypeOp n abs rep vs$$

Figure: Additional Primitive Inference Rules in OpenTheory 6

News from OpenTheory

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory

Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

OpenTheory is updating constantly, so will Holide and Dedukti.

Today's Topics:

- 1. Re: package upload failed (Joe Leslie-Hurd)
- 2. Re: interpretation in separate file (Joe Leslie-Hurd)

Holide and Dedukti

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- OpenTheory has a repository of proof packages (articles).
- Holide translates proofs from OpenTheory articles to Dedukti.
- Dedukti¹ is a proof checker (for proof checking).
- from a reviewer: It is not clear from the abstract whether the author has contributed to the development of Holide or Dedukti

Workflow of OpenTheory, Holide and Dedukti

Conclusion

Translation

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

translate $\left(\begin{array}{c} \Gamma \vdash \varphi = \psi \\ \overline{\Gamma} \vdash \psi = \varphi \end{array} sym \right) = Sym|A||t_1||t_2|$ translate $\left(\begin{array}{c} \Gamma \vdash s = t & \Delta \vdash t = u \\ \overline{\Gamma} \cup \Delta \vdash s = u \end{array} trans \right) =$ Trans|A||x||y||z||D_1||D_2|, where D_1 is the proof of s = tand D_1 is the proof of t = utranslate $\left(\begin{array}{c} \Gamma \vdash \varphi & \Delta \vdash \psi \\ \overline{\Gamma} \cup (\Delta \setminus \{\varphi\}) \vdash \psi \end{array} proveHyp \right) =$ ProveHyp|x||y||D_1|($\lambda x : ||\psi||.|D_2|$), where D_1 is the proof of φ and D_2 is the proof of ψ .

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ♪ ○ ○ ○ 15/29

Translation (Continued)

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Sym, Trans and ProveHyp have types as follows:

Sym : $\Pi \alpha$: type. $\Pi x, y$: term α . proof (eq bool x y) \rightarrow proof (eq bool y x)

Trans : $\Pi \alpha$: *type*. Πx , *y*, *z* : *term* α *proof* (*eq* α *x y*) \rightarrow *proof* (*eq* α *y z*) \rightarrow *proof* (*eq* α *x z*)

 $ProveHyp: \Pi x, y: term \ bool.proof \ x \to (proof \ x \to proof \ y) \to proof \ y$

<ロト<日ト<日ト<三ト<三ト<三ト<三ト<16/29

Benchmarks: Translation

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Dockogo	Holide 1		Holide 2	
rackage	Size (KB)	Time (s)	Size (KB)	Time (s)
base	1,436	19.35	1,194	19.42
cl	313	5.77	313	5.56
empty	0	0.20	0	0.00
gfp	136	1.42	112	1.35
lazy-list	1,390	31.43	1,391	31.78
modular	45	1.13	37	0.37
natural-bits	162	1.43	132	1.39
natural-divides	193	2.10	157	1.94
natural-fibonacci	130	1.31	108	1.24
natural-prime	140	1.46	116	1.34
parser	240	3.22	204	3.15
probability	26	0.30	23	0.23
stream	75	0.75	63	0.73
word10	86	0.76	71	0.62
word12	88	0.79	72	0.75
word16	131	1.60	107	0.77
word5	77	0.70	64	1.56
Total	4,668	73.73	4,377	72.21

Figure: The Size of Article Files and Translation Time and 17/2

Benchmarks: Checking

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Deckogo	Dedukti (1	Holide 1)	Dedukti (1	Holide 2)
Fackage	Size (KB)	Time (s)	Size (KB)	Time (s)
base	4,681	10.63	4,440	9.74
cl	1,219	2.42	1,219	2.46
empty	0	0.00	0	0.00
gfp	400	0.73	375	0.65
lazy-list	5,718	13.31	5,717	13.11
modular	120	0.19	111	0.17
natural-bits	452	0.74	419	0.68
natural-divides	599	1.11	566	0.99
natural-fibonacci	378	0.67	354	0.60
natural-prime	408	0.72	388	0.65
parser	802	1.87	776	1.69
probability	72	0.12	69	0.11
stream	221	0.41	211	0.38
word10	234	0.38	216	0.29
word12	239	0.40	220	0.35
word16	396	0.80	364	0.36
word5	207	0.33	192	0.72
Total	16,146	34.83	$15,\!637$	32.95

Figure: Th Size of Article Files and Proof Checking Time ~ 18/29

Evaluation

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- Fully verified all the libraries in OpenTheory.
- Little difference between version 5 and version 6.
- The size of proof articles got reduced by around 7%. The proof checking time reduced by around 5%.
- These benchmarks were generated on a 64-bit Intel Core i5-4590 CPU @3.30GHz ×4 PC with 3.8GB RAM.

Kepler Conjecture

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- 20 years to complete
- The formal proof of Kepler Conjecture takes about 5000 hours to check (in HOL Light) in 2014.

What if we check by Dedukti?

ProofCloud

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

1 A Proof Retrievel Engine:

http://airobert.github.io/proofcloud/

- 2 1700+ pages of proofs with analysis.
- 3 A representation of proof checking results by Holide and Dedukti.

4 Which proofs are constructive?

Version 2

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

Proof Search Engine which represents the analysis and proof checking results.

Figure: Index Page of ProofCloud (version 1)

It's version 2 now !!!

Demo

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- So far there are 6 packages: base, stream, probability, natural-bits, natural-divides and natural-prime.
- For the natural-prime package: http://airobert. github.io/proofcloud/natural-prime.html

- ADD_EQ_0
- $\blacksquare !mn.m+n=0 \Leftrightarrow m=0 \land n=0$

Structural Analysis

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

the combination of the subst and eqmp rule takes over 45% of all the inferences rules.

Inference Rules	Count
subst	93667
eqmp	92617
appthm	53155
proveHyp	47728
betaConv	21485
absThm	15096
assume	16986
Overall	413207

Structural Results

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatio and Proof Checking

Proof Retrieval Engine: ProofCloud The frequency of subst and eqmp combined is over 45%

Main Inference Rules of OpenTheory Articles

Figure: Frequency of Main Inference Rules of OpenTheory Articles

And more for each individual theorem or combine with Machine Learning?

Statistical Results

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

1209 proofs in the standard library.541 constructive proofs v.s. 668 classical proofs44.75% of them constructive proofs.

In contrast, the *natural-divides* package has only 10 constructive proofs out of 136 proofs, making only 7.35% of them constructive.

Next, these 668 proofs to their constructive form?

ProofCloud 3?

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- More OpenTheory packages and even Coq, Mizar ... libraries?
- Better GUI
- Better searching accuracy
- More text description of theorems (at least a proper name)
- A proof analysis engine combined with machine learning as a feature suggestion engine after comparing thousands of proofs?

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion and Acknowledgement

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translation and Proof Checking

Proof Retrieval Engine: ProofCloud

Conclusion

- An overview of recent updates of OpenTheory, Holide, Dedukti, ProofCloud
- Proof checking benchmarks
- Thanks to Dr. Gilles Dowek, Dr. Ali Assaf, Dr. Joe Hurd, Mr. Frédéric Gilbert and Mr. Nigel Sham and Mr. Dianlin Shen.

▲□▶▲□▶▲□▶▲□▶ □ のへで

28/29

Thank you!

Proof Engineering of Higher Order Logic

Robert White (Shuai Wang)

Introduction Higher Order Logic HOL Kernel Inference Rules

Proof Collaboration OpenTheory Version 5 & 6

Proof Translatior and Proof Checking

Proof Retrieval Engine: ProofCloue

Conclusion

I am looking for a master thesis supervisor and opportunities for doctoral studies related but not limited to those provers!

Where A	re We?
	Code ATATP Assess Diaman
	TTT HE
	ATP Proof