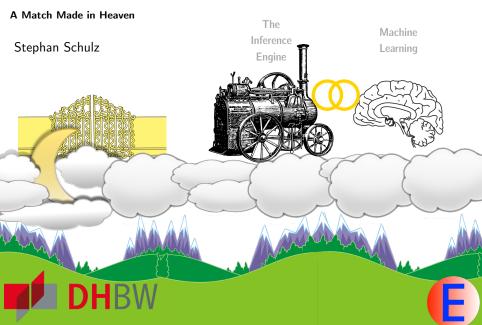
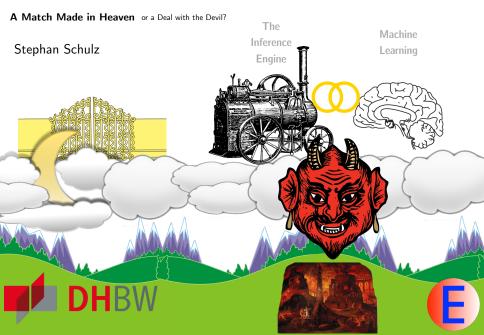
Deduction and Induction



Deduction and Induction

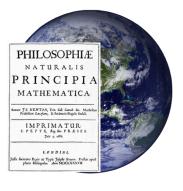


Agenda

- ► Search and choice points in saturating theorem proving
- ► Basic questions about learning
- ► Learning from performance data
 - Classification and heuristic selection
 - Parameters for clause selection
- ► Learning from proofs and search graphs
 - Proof extraction
 - Learning clause evaluations (?)
- ► Conclusion

Theorem Proving: Big Picture

Real World Problem



Formalized Problem

 $\begin{aligned} \forall X: human(X) &\rightarrow mortal(X) \\ \forall X: philosopher(X) &\rightarrow human(X) \\ philosopher(socrates) \end{aligned}$

; |=

mortal(socrates)

Proof

or

Countermodel

or

Timeout

ATP
Proof Search

Contradiction and Saturation

- Proof by contradiction
 - Assume negation of conjecture
 - Show that axioms and negated conjecture imply falsity
- Saturation
 - Convert problem to Clause Normal Form
 - Systematically enumerate logical consequences of axioms and negated conjecture
 - ▶ Goal: Explicit contradiction (empty clause)
- Redundancy elimination
 - Use contracting inferences to simplify or eliminate some clauses

Contradiction and Saturation

- Proof by contradiction
 - Assume negation of conjecture
 - Show that axioms and negated conjecture imply falsity
- ► Saturation
 - Convert problem to Clause Normal Form
 - Systematically enumerate logical consequences of axioms and negated conjecture
 - ▶ Goal: Explicit contradiction (empty clause)
- Redundancy elimination
 - Use contracting inferences to simplify or eliminate some clauses

Search control problem: How and in which order do we enumerate consequences?

Proof Search and Choice Points

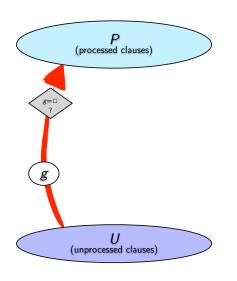
- ► First-order logic is semi-decidable
 - Provers search for proof in infinite space
 - ... of possible derivations
 - ... of possible consequences
- ► Major choice points of Superposition calculus:
 - Term ordering (which terms are bigger)
 - (Negative) literal selection
 - ▶ Selection of clauses for inferences (with the given clause algorithm)

Term Ordering and Literal Selection

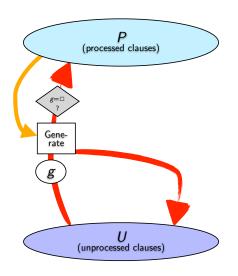
Negative Superposition with selection

$$\frac{C \lor s \simeq t \quad D \lor u \not\simeq v}{(C \lor D \lor u_{[p \leftarrow t]} \not\simeq v)_{\sigma}}$$

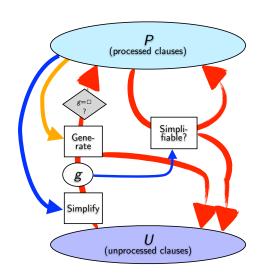
- $\qquad \text{if } \sigma = \mathrm{mgu}(u|_p, s)$
 - ▶ and $(s \simeq t)_{\sigma}$ is \succ -maximal in $(C \lor s \simeq t)_{\sigma}$
 - ▶ and s is \succ -maximal in $(s \simeq t)_{\sigma}$
 - ▶ and $u \simeq v$ is selected in $D \lor u \not\simeq v$
 - ▶ and u is \succ -maximal in $(s \simeq t)_{\sigma}$
- Choice points:
 - ▶ 's a ground-total rewrite ordering
 - ► Consistent throughout the proof search
 - ► I.e. in practice determined up-front
 - Any negative literal can be selected
 - Current practice: Fixed scheme picked up-front



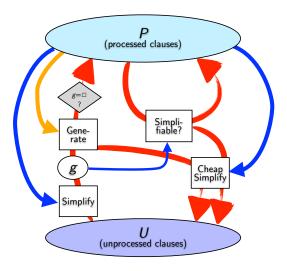
► Aim: Move everything from *U* to *P*



- Aim: Move everything from U to P
- ► Invariant: All generating inferences with premises from P have been performed

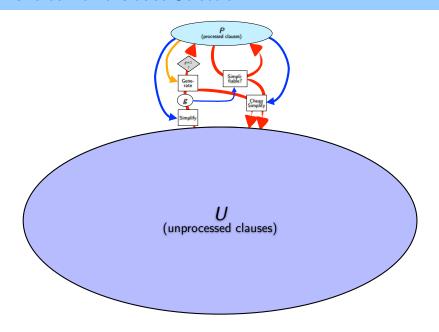


- ► Aim: Move everything from *U* to *P*
- ► Invariant: All generating inferences with premises from P have been performed
- Invariant: P is interreduced

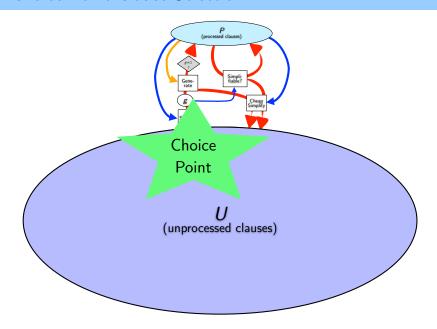


- Aim: Move everything from U to P
- ► Invariant: All generating inferences with premises from P have been performed
- ► Invariant: *P* is interreduced
- Clauses added to U are simplified with respect to P

Choice Point Clause Selection



Choice Point Clause Selection



Induction for Deduction

- ▶ Question 1: What to learn from?
 - Performance data (prover is a black box)
 - Proofs (only final result of search is visible)
 - ▶ Proof search graphs (most of search is visible)
- ▶ Question 2: What to learn?
 - ▶ Here: Learn strategy selection
 - Here: Learn parameterization for clause selection heuristics
 - ► Here: Learn new clause evaluation functions
 - **...**

Automatic Strategy Selection

Strategy Selection

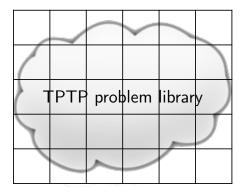
Definition: A strategy is a collection of all search control parameters

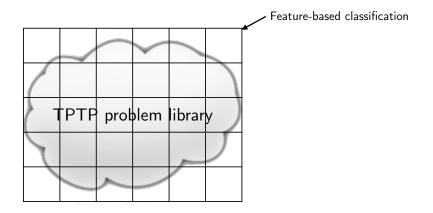
- ► Term ordering
- ► Literal selection scheme
- ► Clause selection heuristic
- ► ... (minor parameters)

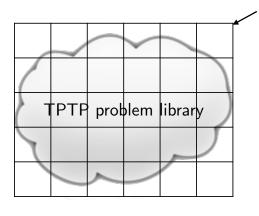
Strategy Selection

Definition: A strategy is a collection of all search control parameters

- ► Term ordering
- ► Literal selection scheme
- Clause selection heuristic
- ► ... (minor parameters)
- ▶ Observation: Different problems are simple for different strategies
- Question: Can we determine a good heuristic (or set of heuristics) up-front?
- Original: Manually coded automatic modes
 - Based on developer intuition/insight/experience
 - ► Limited success, high maintenance
- ► State of the art: Automatic generation of automatic modes



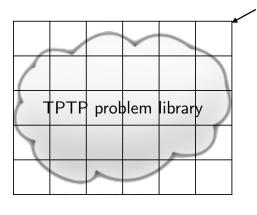




Feature-based classification

Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best



Feature-based classification

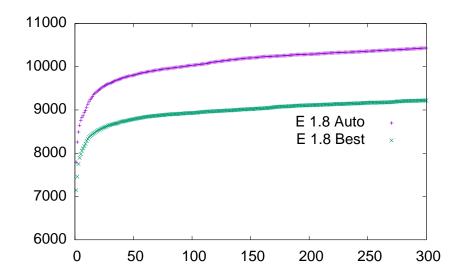
Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best

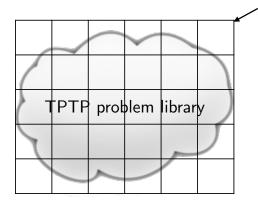
Example features

- Number of clausse
- Arity of symbols
- Unit/Horn/Non-horn

Auto Mode Performance



A Caveat



Feature-based classification

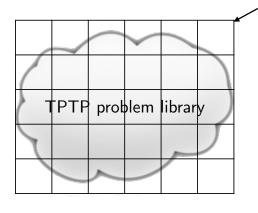
Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best

Example features

- Number of clausse
- Arity of symbols
- Unit/Horn/Non-horn

A Caveat



Feature-based classification

Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best

Example features

- Number of clausse
- Arity of symbols
- \bullet Unit/Horn/Non-horn

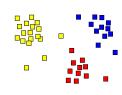
Features based on developer...

- ...intuition
- ...insight
- ...experience

Current Work: Learning Classification

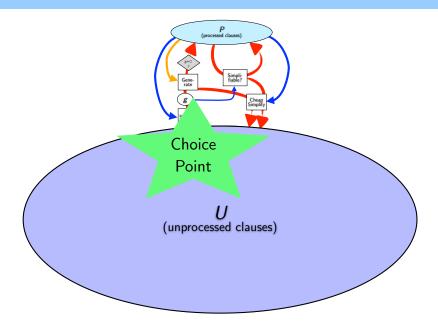
- ► Characterize problems by performance vectors
 - Which strategy solved the problem how fast?
- Unsupervised clustering of problems based om performance
 - ► Each cluster contains problems on which the same strategies perform well
- ► Feature extraction: Try to find characterization of clusters
 - E.g. based on feature set
 - E.g. using nearest-neighbour approaches

My Bachelor Student Ayatallah just started work on this topic - results in 6 months



Learning parameterization for clause selection heuristics

Reminder: Choice Point Clause Selection



Basic Approaches to Clause Selection

- Symbol counting
 - ▶ Pick smallest clause in U
 - $|\{f(X) \neq a, P(a) \neq \$true, g(Y) = f(a)\}| = 10$
- ► FIFO
 - ightharpoonup Always pick oldest clause in U
- ► Flexible weighting
 - Symbol counting, but give different weight to different symbols
 - ▶ E.g. lower weight to symbols from goal!
 - ▶ E.g. higher weight for symbols in inference positions
- Combinations
 - Interleave different schemes

Given-Clause Selection in E (1)

- ► Domain Specific Language (DSL) for clause selection scheme
- Arbitrary number of priority queues
- ► Each queue ordered by:
 - Unparameterized priority function
 - Parameterized heuristic evaluation function
- Clauses picked using weighted round-robin scheme
 - Example (5 queues):

Given-Clause Selection in E (2)

Example clause selection heuristic

- Infinitely many possibilities
 - ▶ Several integer and floating point parameters per evaluation function
 - Arbitrary combinations of individual evaluation functions

Given-Clause Selection in E (2)

► Example clause selection heuristic

- ► Infinitely many possibilities
 - Several integer and floating point parameters per evaluation function
 - Arbitrary combinations of individual evaluation functions

How do we find good clause selection heuristics (without relying on developer intuition, insight, experience)?

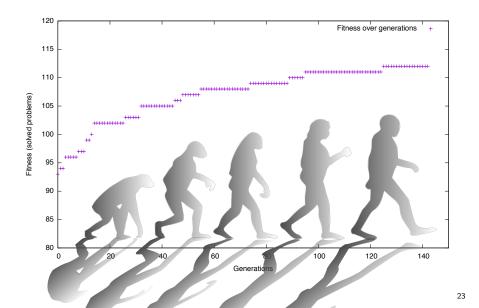
Genetic Algorithms

- ► Optimization based on evolving population of individuals
 - Optimization is organized in generations
 - ▶ In each generation, individuals compete to reproduce
- ► Each individual is a candidate solution (i.e. search heuristic)
 - ▶ Individuals are assigned a fitness score based on performance
 - ▶ More fit individuals are more likely to reproduce into the next generation
- ► The next generation:
 - Mutation randomly modify individual
 - Crossover create new individual from two parents
 - Survivors

Applying Genetic Algorithms to Clause Selection

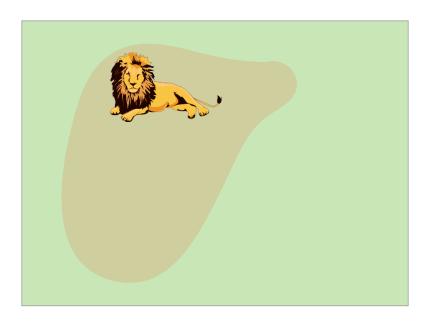
- ► Encoding: DSL translated into S-Expressions
- ► Mutation: Randomly modify parameters of one heuristic
- ▶ Crossover:
 - Compose individual by randomly inserting evaluation functions from both parents
 - ► If the same generic evaluation function occurs in both, randomly exchange parameters
- ► Fitness: How many medium difficulty problems are solved
 - ...on smallish sample set
 - ... with short time limit
- ▶ Selection: Tournament selection $(n \approx 5)$

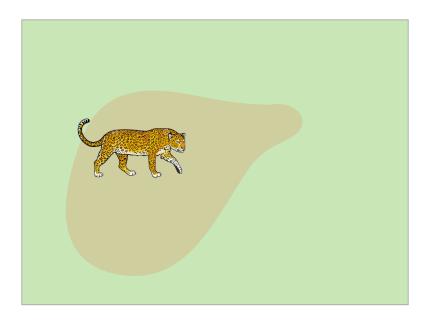
Evolution in Action



(Very) Preliminary Results

- Evolution finds good clause selection heuristics from random initial population
 - ► Convergence in \approx 200 generations
 - ▶ Time per generation \approx 45 CPU hours
 - ▶ ... \approx 40 minutes on 24 core server
- Best evolved heuristic beats best conventional heuristic
 - Evaluation on 15758 problems from TPTP 6.0.0
 - ▶ 30 second time limit, 2.6GHz Intel Xeon machines, enough memory
 - Evolved: 8814 solutions found
 - Manual: 8750 solutions found
 - Unique solutions: 466 evolved vs. 386 manual





- ► Idea: Modify fitness function
 - Problems are prey
 - Individual heuristics are predators
 - If several predators catch the same prey, they have to share the benefit
 - ightharpoonup problems solved by no or few heuristics are more valuable
 - ightharpoonup Force diversity of the ecosystem

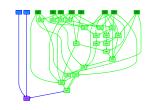
- ► Idea: Modify fitness function
 - Problems are prey
 - Individual heuristics are predators
 - If several predators catch the same prey, they have to share the benefit
 - ▶ ⇒ problems solved by no or few heuristics are more valuable
 - ▶ ⇒ Force diversity of the ecosystem

My Bachelor Student Ahmed just started work on this topic - results in 6 months

Proof Extraction and Learning

Learning from Proofs and Proof Search Graphs

- ► Intuition: Previous proof searches are useful to guide new proof attempts
- Naive approach:
 - Clauses in the proof tree are positive examples
 - (All other clauses are negative examples)
- ► Initial attempts
 - DISCOUNT (Schulz 1995, Schulz&Denzinger 1996) - UEQ, patterns
 - ► E (Schulz 2000, 2001) CNF, patterns
 - Overall, modest successes
 - Mostly with positive examples only compare Otter's hints

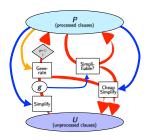


Problems and Solutions

- ► Problem: Search protocol size
 - ▶ Initial approach: Store all intermediate steps
 - Bad time and space performance
 - ▶ Borderline impossible in 2000, still hard today
- ▶ Problem: Not all examples represent search decisions
 - Many intermediate results
 - Also: Vastly unbalanced ratio of positive/negative examples
- Common solution:
 - Internal proof object (re-)construction
 - Compact representation of the search graph
 - Actually evaluated and picked clauses are recorded
 - Minimal overhead (0.24%) in time
 - Small overhead in memory (due to structure sharing and early discarding of many redundant clauses)

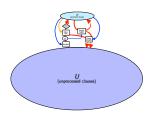
Proof Generation with Limited Archiving

- ▶ DISCOUNT loop: Only clauses in P are used for inferences
 - \triangleright *U* is subject to simplification, but is passive
 - Only clauses in P need to be available in the proof tree



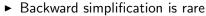
Proof Generation with Limited Archiving

- ► DISCOUNT loop: Only clauses in *P* are used for inferences
 - \triangleright *U* is subject to simplification, but is passive
 - ▶ Only clauses in P need to be available in the proof tree
- Backward simplification is rare
 - ▶ Only clauses in P can be backwards-simplified (and P is small)
 - Heuristically, newer clauses are larger (and big clauses rarely simplify small clauses)

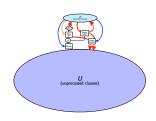


Proof Generation with Limited Archiving

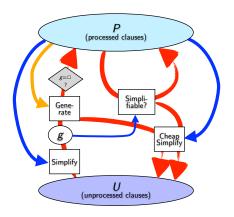
- ► DISCOUNT loop: Only clauses in *P* are used for inferences
 - ▶ *U* is subject to simplification, but is passive
 - Only clauses in P need to be available in the proof tree



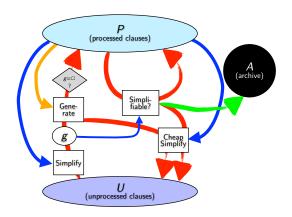
- ▶ Only clauses in P can be backwards-simplified (and P is small)
- Heuristically, newer clauses are larger (and big clauses rarely simplify small clauses)
- ► Solution: Non-destructive backwards-simplification
 - Clauses in P are archived on simplification
 - Simplified new clause is build from fresh copy

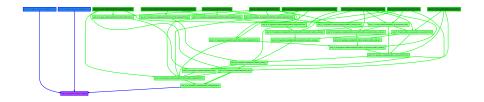


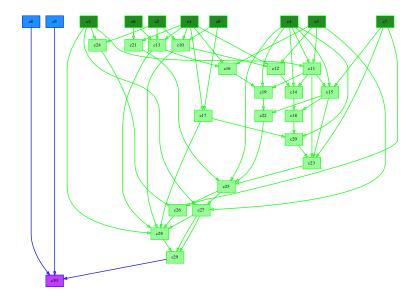
Proof Generation

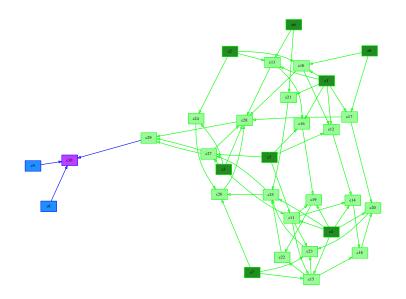


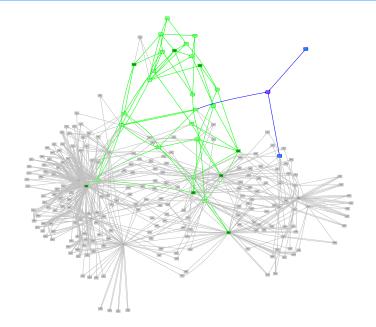
Proof Generation





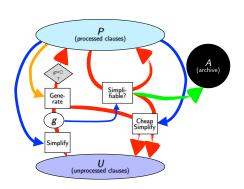






Classification of Search Decisions

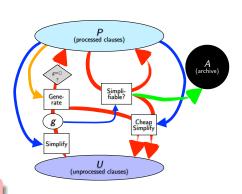
- Proof state at success:
 - ▶ All proof clauses are in $P \cup A$
 - Clauses in U never contribute
- ► All clauses in *P* ∪ *A* have been selected for processing
 - Positive examples: Proof clauses
 - Negative examples: Non-proof clauses

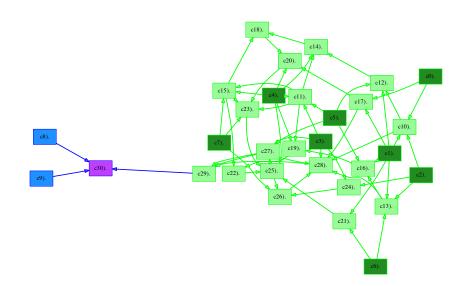


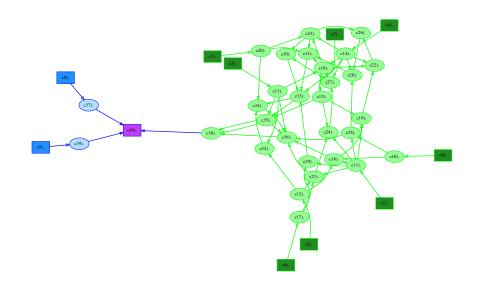
Classification of Search Decisions

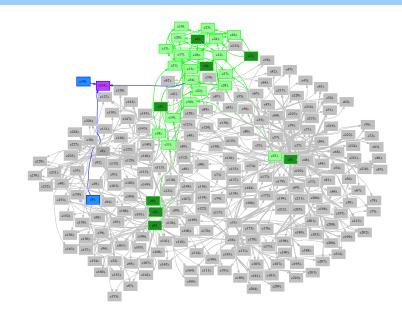
- Proof state at success:
 - ▶ All proof clauses are in $P \cup A$
 - Clauses in U never contribute
- ► All clauses in *P* ∪ *A* have been selected for processing
 - Positive examples: Proof clauses
 - Negative examples: Non-proof clauses

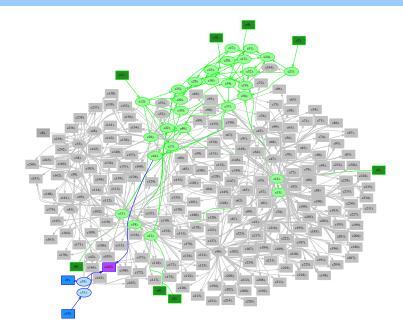
Idea: Apply Machine Learning











Some Initial Results

- ► Training examples can be cheaply extracted
- ► Ratio of utilized to useless given clauses (GCU-ratio) is a good predictor of Heuristic perfomance (Schulz/Möhrmann, IJCAR 2016)
- ► Positive training examples can be automatically written into a watch list and used as hints
 - ▶ Clauses on the watchlist are preferred over all other clauses
 - First experiments
 - ▶ Reproving with much better GCU-ratio (and much faster)
 - Some improvement even for related problems

Open Questions

▶ Abstractions

- Are concrete function symbols relevant?
- Is the concrete term structure relevant?

► Learning methods

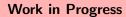
- ► Folding architecture networks?
- ► Feature-based numerical methods?
- Pattern-based learning?
- ▶ Deep learning with convoluted networks?

► Trade-offs

- Power vs. convenience
- Speed vs. quality
- Online vs. offline costs

Open Questions

- Abstractions
 - ► Are concrete function symbols relevant?
 - ▶ Is the concrete term structure relevant?
- ► Learning methods
 - ► Folding architecture networks?
 - ► Feature-based numerical methods?
 - Pattern-based learning?
 - ▶ Deep learning with convoluted networks?
- ► Trade-offs
 - Power vs. convenience
 - Speed vs. quality
 - Online vs. offline costs



(Nearly) The End

Conclusion

- ► Controlling proof search for theorem provers is a rich application for machine learning techniques
- ► Inductive techniques can be applied at several different levels of search control
- ► Explicit proofs can be generated efficiently
 - ...and mined for training examples!
- Proofs are beautiful and informative
 - Learning from proofs may be the future

Conclusion

- ► Controlling proof search for theorem provers is a rich application for machine learning techniques
- ► Inductive techniques can be applied at several different levels of search control
- ► Explicit proofs can be generated efficiently
 - ...and mined for training examples!
- ▶ Proofs are beautiful and informative
 - Learning from proofs may be the future

Thank you! Questions?

Image Credit

- ► Clipart via http://openclipart.org
- ► Hieronimous Bosch via https://commons.wikimedia.org