Deduction and Induction

Machine

The
Inference

A Match Made in Heaven

Learning

Stephan Schulz

&3
A0S
6 G
B

2

ORI
ARATAS
T



Deduction and Induction

A Match Made in Heaven or a Deal with the Devil?
The

Inference

Machine

Stephan Schulz . = Learning
Engine




Agenda

v

Search and choice points in saturating theorem proving

v

Basic questions about learning

v

Learning from performance data

Classification and heuristic selection
Parameters for clause selection

v

Learning from proofs and search graphs
Proof extraction
Learning clause evaluations (?)

Conclusion

v



Theorem Proving: Big Picture

Real World Problem Formalized Problem

VX : human(X) — mortal(X)
VX : philosopher(X) — human(X)
philosopher(socrates)

| PHILOSOPHI

NATURALIS

xP RINCIPIA
MATHEMATICA

E ;
?

}:

mortal(socrates)

Proof

or
Countermodel
or

Timeout

tit



Contradiction and Saturation

» Proof by contradiction
Assume negation of conjecture
Show that axioms and negated conjecture imply
falsity

» Saturation
Convert problem to Clause Normal Form
Systematically enumerate logical consequences of
axioms and negated conjecture
Goal: Explicit contradiction (empty clause)

» Redundancy elimination
Use contracting inferences to simplify or eliminate
some clauses

Formula
set

Equi-
satisfiable
clause set




Contradiction and Saturation

» Proof by contradiction
Assume negation of conjecture
Show that axioms and negated conjecture imply
falsity

» Saturation
Convert problem to Clause Normal Form
Systematically enumerate logical consequences of
axioms and negated conjecture
Goal: Explicit contradiction (empty clause)

» Redundancy elimination
Use contracting inferences to simplify or eliminate
some clauses

Search control problem: How and in which order do we
enumerate consequences?

Formula
set

Equi-
satisfiable
clause set




Proof Search and Choice Points

» First-order logic is semi-decidable
Provers search for proof in infinite space
... of possible derivations
... of possible consequences
» Major choice points of Superposition calculus:
Term ordering (which terms are bigger)
(Negative) literal selection
Selection of clauses for inferences (with the given clause algorithm)



Term Ordering and Literal Selection

» Negative Superposition with selection

CVs~t DVuzv
(C\/D\/U[pkt]’;ﬁv)g

if o = mgu(ulp,s)
» and (s ~ t), is >=-maximal in (CV s~ t),
» and s is >-maximal in (s ~ t)o
» and u~ v is selected in DV u# v
» and u is >-maximal in (s ~ t),
» Choice points:
> is a ground-total rewrite ordering

» Consistent throughout the proof search
> l.e. in practice determined up-front

Any negative literal can be selected
» Current practice: Fixed scheme picked up-front



P
(processed clauses)

» Aim: Move everything
from U to P



The Given-Clause Algorithm

(processed clauses)

» Aim: Move everything
from U to P

» Invariant: All generating
inferences with premises
from P have been
performed

V)
(unprocessed clauses)



The Given-Clause Algorithm

(processed clauses)

» Aim: Move everything
from U to P

» Invariant: All generating
inferences with premises
from P have been
performed

Simpli-
fiable?

» Invariant: P is
interreduced

Simplify

(unprocessed clauses)




The Given-Clause Algorithm

(processed clauses)

Simpli-
fiable?

Simplify

(unprocessed clauses)

Aim: Move everything
from U to P

Invariant: All generating
inferences with premises
from P have been
performed

Invariant: P is
interreduced

Clauses added to U are
simplified with respect
to P









Induction for Deduction

» Question 1: What to learn from?

Performance data (prover is a black box)
Proofs (only final result of search is visible)
Proof search graphs (most of search is visible)
» Question 2: What to learn?
Here: Learn strategy selection
Here: Learn parameterization for clause selection
heuristics
Here: Learn new clause evaluation functions




10



Strategy Selection

Definition: A strategy is a collection of all search control parameters
» Term ordering

» Literal selection scheme

» Clause selection heuristic

» ... (minor parameters)

11




Strategy Selection

Definition: A strategy is a collection of all search control parameters

>

>

>

Term ordering
Literal selection scheme
Clause selection heuristic

... (minor parameters)

Observation: Different problems are simple for different strategies
Question: Can we determine a good heuristic (or set of heuristics)
up-front?

Original: Manually coded automatic modes

Based on developer intuition/insight/experience
Limited success, high maintenance

State of the art: Automatic generation of automatic modes

11




TPTP problem library

-

12



“Learning” Heuristic Selection

" TPTF

prok

Dlem

ibrar

12



“Learning” Heuristic Selection

Feature-based classification
o

" TPTF

prok

Dlem

ibrar

12



“Learning” Heuristic Selection

Feature-based classification
o

" TPTF

prok

Dlem

ibrar

Assign strategies to

classes based on collected

performance data from

previous experiments

e Simplest: Always pick best
strategy in class

e If no data, pick globally best

12



“Learning” Heuristic Selection

Feature-based classification
o

Assign strategies to
” > classes based on collected

’ performance data from
previous experiments
) - . e Simplest: Always pick best
TPTR problem library plest: Weys P
strategy in class
e If no data, pick globally best

Example features
-~ e Number of clausse

o Arity of symbols
e Unit/Horn/Non-horn

12



Auto Mode Performance

11000
10000 - ﬁwmwwwwwwwwwwwwm |
ﬁ#
9000 | "
f E1.8Auto -
| E 1.8 Best x
8000 | |
e
7000 | 1
6000 ‘ ‘
0 50 100 150 200 250 300

TPTP 5.6.0 CNF&FOF problems

13



A Caveat

Feature-based classification
o

"PTH

prok

Dlem

ibrar

Assign strategies to

classes based on collected

performance data from

previous experiments

e Simplest: Always pick best
strategy in class

e If no data, pick globally best

Example features

e Number of clausse

o Arity of symbols

e Unit/Horn/Non-horn

14



A Caveat

Feature-based classification
o

"PTH

prok

Dlem

ibrar

Assign strategies to

classes based on collected

performance data from

previous experiments

e Simplest: Always pick best
strategy in class

e If no data, pick globally best

Example features

e Number of clausse

o Arity of symbols

e Unit/Horn/Non-horn

Features based on developer...

e __intuition

e _.insight

® _._.experience 14



Current Work: Learning Classification

» Characterize problems by performance vectors %DDE% " -'.:llL
(m]
Which strategy solved the problem how fast? opg@  © . .
» Unsupervised clustering of problems based om 0 L
performance an® =

Each cluster contains problems on which the
same strategies perform well

» Feature extraction: Try to find characterization of
clusters

E.g. based on feature set
E.g. using nearest-neighbour approaches

My Bachelor Student Ayatallah just started work on
this topic - results in 6 months

15



16






Basic Approaches to Clause Selection

» Symbol counting
Pick smallest clause in U
{f(X) # a, P(a) # $true,g(Y) = f(a)}| =10
» FIFO
Always pick oldest clause in U
» Flexible weighting
Symbol counting, but give different weight to different symbols
E.g. lower weight to symbols from goal!
E.g. higher weight for symbols in inference positions
» Combinations

Interleave different schemes

18



Given-Clause Selection in E (1)

v

Domain Specific Language (DSL) for clause selection scheme

v

Arbitrary number of priority queues

v

Each queue ordered by:

Unparameterized priority function
Parameterized heuristic evaluation function

v

Clauses picked using weighted round-robin scheme
Example (5 queues):
(1*ConjectureRelativeSymbolWeight (SimulateS0S,

0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4xConjectureRelativeSymbolWeight (ConstPrio,

0.1, 100, 100, 100, 100,1.5, 1.5, 1.5),
1¥FIFOWeight (PreferProcessed),
1*ConjectureRelativeSymbolWeight (PreferNonGoals,

0.5, 100, 100, 100,100, 1.5, 1.5, 1),
4xRefinedweight (SimulateS0S,3,2,2,1.5,2))

19



Given-Clause Selection in E (2)

» Example clause selection heuristic

(1*ConjectureRelativeSymbolWeight (SimulateSOS,

0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4xConjectureRelativeSymbolWeight (ConstPrio,

0.1, 100, 100, 100, 100,1.5, 1.5, 1.5),
1#FIFOWeight (PreferProcessed),
1xConjectureRelativeSymbolWeight (PreferNonGoals,

0.5, 100, 100, 100,100, 1.5, 1.5, 1),
4+Refinedweight (SimulateS0S,3,2,2,1.5,2))

> Infinitely many possibilities

Several integer and floating point parameters per evaluation function
Arbitrary combinations of individual evaluation functions

20



Given-Clause Selection in E (2)

» Example clause selection heuristic
(1*ConjectureRelativeSymbolWeight (SimulateSOS,

0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4xConjectureRelativeSymbolWeight (ConstPrio,

0.1, 100, 100, 100, 100,1.5, 1.5, 1.5),
1#FIFOWeight (PreferProcessed),
1xConjectureRelativeSymbolWeight (PreferNonGoals,

0.5, 100, 100, 100,100, 1.5, 1.5, 1),
4+Refinedweight (SimulateS0S,3,2,2,1.5,2))
> Infinitely many possibilities
Several integer and floating point parameters per evaluation function
Arbitrary combinations of individual evaluation functions

How do we find good clause selection heuristics (without relying on
developer intuition, insight, experience)?

20



Genetic Algorithms

» Optimization based on evolving population of individuals
Optimization is organized in generations
In each generation, individuals compete to reproduce

» Each individual is a candidate solution (i.e. search heuristic)

Individuals are assigned a fitness score based on performance
More fit individuals are more likely to reproduce into the next
generation

» The next generation:

Mutation - randomly modify individual
Crossover - create new individual from two parents
Survivors

21



Applying Genetic Algorithms to Clause Selection

v

Encoding: DSL translated into S-Expressions

v

Mutation: Randomly modify parameters of one heuristic
Crossover:

v

Compose individual by randomly inserting evaluation functions from
both parents

If the same generic evaluation function occurs in both, randomly
exchange parameters

v

Fitness: How many medium difficulty problems are solved

...on smallish sample set
... with short time limit

v

Selection: Tournament selection (n = 5)

22



Fitness (solved problems)

120

115

T T
Fitness over generations

+

23



(Very) Preliminary Results

» Evolution finds good clause selection heuristics from random initial
population
Convergence in =~ 200 generations
Time per generation ~ 45 CPU hours
..~ 40 minutes on 24 core server

» Best evolved heuristic beats best conventional heuristic

Evaluation on 15758 problems from TPTP 6.0.0

30 second time limit, 2.6GHz Intel Xeon machines, enough memory
Evolved: 8814 solutions found

Manual: 8750 solutions found

Unique solutions: 466 evolved vs. 386 manual

24






Current Work: Diversity Beats Ferocity

g &
R

25












Current Work: Diversity Beats Ferocity

|

25












Current Work: Diversity Beats Ferocity

» Idea: Modify fitness function
Problems are prey
Individual heuristics are predators
If several predators catch the same prey, they have to share the
benefit
= problems solved by no or few heuristics are more valuable
= Force diversity of the ecosystem

26



Current Work: Diversity Beats Ferocity

» Idea: Modify fitness function
Problems are prey
Individual heuristics are predators
If several predators catch the same prey, they have to share the
benefit
= problems solved by no or few heuristics are more valuable
= Force diversity of the ecosystem

My Bachelor Student Ahmed just started work on this topic - results in
6 months

26



27



Learning from Proofs and Proof Search Graphs

» Intuition: Previous proof searches are useful to
guide new proof attempts
» Naive approach:

Clauses in the proof tree are positive
examples
(All other clauses are negative examples)

» Initial attempts

DISCOUNT (Schulz 1995, Schulz&Denzinger
1996) - UEQ), patterns

E (Schulz 2000, 2001) - CNF, patterns
Overall, modest successes

Mostly with positive examples only - compare
Otter's hints

28



Problems and Solutions

» Problem: Search protocol size
Initial approach: Store all intermediate steps
Bad time and space performance
Borderline impossible in 2000, still hard today
» Problem: Not all examples represent search decisions

Many intermediate results
Also: Vastly unbalanced ratio of positive/negative examples

» Common solution:
Internal proof object (re-)construction
Compact representation of the search graph
Actually evaluated and picked clauses are recorded
Minimal overhead (0.24%) in time
Small overhead in memory (due to structure sharing and early
discarding of many redundant clauses)

29



Proof Generation with Limited Archiving

» DISCOUNT loop: Only clauses in P are used
for inferences
U is subject to simplification, but is passive
Only clauses in P need to be available in the
proof tree

30



Proof Generation with Limited Archiving

» DISCOUNT loop: Only clauses in P are used
for inferences
U is subject to simplification, but is passive
Only clauses in P need to be available in the
proof tree

» Backward simplification is rare

Only clauses in P can be
backwards-simplified (and P is small)
Heuristically, newer clauses are larger (and
big clauses rarely simplify small clauses)

30



Proof Generation with Limited Archiving

» DISCOUNT loop: Only clauses in P are used
for inferences
U is subject to simplification, but is passive
Only clauses in P need to be available in the
proof tree

» Backward simplification is rare
Only clauses in P can be
backwards-simplified (and P is small)
Heuristically, newer clauses are larger (and
big clauses rarely simplify small clauses)
» Solution: Non-destructive
backwards-simplification

Clauses in P are archived on simplification
Simplified new clause is build from fresh copy

30



Simpli-
fiable?

Simplify

N

Ch
Simpity

31



Proof Generation

,3
(processed clauses)

Simpli-
Gene- fiable?
rate
e Cheap
Simplify

T
Simplify

(unprocessed clauses)

'l

31



32















Classification of Search Decisions

» Proof state at success:

All proof clauses are in PU A
Clauses in U never contribute

» All clauses in P U A have been
selected for processing
Positive examples: Proof
clauses
Negative examples:
Non-proof clauses

(processed clauses)

Simpli-
fiable?

(unprocessed clauses)

33



Classification of Search Decisions

» Proof state at success:

All proof clauses are in PU A
Clauses in U never contribute

» All clauses in P U A have been
selected for processing
Positive examples: Proof
clauses
Negative examples:
Non-proof clauses

(processed clauses)

Simpli-
fiable?

(unprocessed clauses)

Idea: Apply Machine Learning |

33






34



34






Some Initial Results

» Training examples can be cheaply extracted
» Ratio of utilized to useless given clauses (GCU-ratio) is a good
predictor of Heuristic perfomance (Schulz/Méhrmann, 1JCAR 2016)

» Positive training examples can be automatically written into a watch
list and used as hints

Clauses on the watchlist are preferred over all other clauses
First experiments

Reproving with much better GCU-ratio (and much faster)
Some improvement even for related problems

35



Open Questions

» Abstractions

Are concrete function symbols relevant?
Is the concrete term structure relevant?

» Learning methods
Folding architecture networks?
Feature-based numerical methods?

Pattern-based learning?
Deep learning with convoluted networks?

» Trade-offs

Power vs. convenience
Speed vs. quality
Online vs. offline costs

36



Open Questions

» Abstractions
Are concrete function symbols relevant?
Is the concrete term structure relevant?
» Learning methods
Folding architecture networks?
Feature-based numerical methods?
Pattern-based learning?
Deep learning with convoluted networks?

» Trade-offs

Power vs. convenience
Speed vs. quality
Online vs. offline costs

Work in Progress

36



37



Conclusion

» Controlling proof search for theorem provers is a
rich application for machine learning techniques
» Inductive techniques can be applied at several
different levels of search control
» Explicit proofs can be generated efficiently
...and mined for training examples!

» Proofs are beautiful and informative
Learning from proofs may be the future

38



Conclusion

» Controlling proof search for theorem provers is a
rich application for machine learning techniques
» Inductive techniques can be applied at several
different levels of search control
» Explicit proofs can be generated efficiently
...and mined for training examples!

» Proofs are beautiful and informative
Learning from proofs may be the future

Thank you! ’

Questions?

38



» Clipart via http://openclipart.org

» Hieronimous Bosch via https://commons.wikimedia.org

39


http://openclipart.org
https://commons.wikimedia.org

