
Do LLMs know when they are wrong?

Bartosz Piotrowski1, Witold Drzewakowski12

, Konrad Staniszewski2, and Piotr Mi loś12

1 IDEAS NCBR
2 University of Warsaw

Abstract

Large language models (LLMs) seem to be biased to rather provide an unreliable answer
than to admit that they are unsure how to correctly respond to a question. This is especially
problematic in the context of reasoning-intensive problems. Therefore, in this work we
study “approximate verifiers” – auxiliary statistical models estimating the correctness of
outputs generated by LLMs. Such “verifiers” has been already studied, but typically they
were constructed as LLMs themselves, often as large (or larger) than the base model they
support. In this work, we introduce a novel lightweight approach, LiLaVe, which reliably
extracts correctness signals from the hidden states of the base LLM, and operate with only
a small fraction of the computational budget of LLM-based approximate verifiers.

1 Introduction
LLMs have shown unprecedented performance in a plethora of tasks related to processing natu-
ral language and knowledge retrieval. Recently, there has been interest in enhancing reasoning
capabilities of LLMs. This effort includes applying LLMs to solve math problems, writing code,
or predicting proof steps in proof assistants.

Efforts to improve LLM performance on reasoning-intensive tasks have followed two primary
directions. First, there is a body of work focusing on pre-training or fine-tuning models target-
ing reasoning-intensive tasks. Second, there is ongoing research into designing inference-time
techniques to enhance the performance of LLMs on reasoning-focused tasks, where an LLM is
already pre-trained and fixed. Examples of such simple yet effective techniques are chain-of-
thought prompting [8], and self-consistency decoding [7], also known as majority voting. More
advanced inference-time approaches often combine the decoding process from the base LLM
with a verifier, trained to assess the correctness of individual reasoning steps – or entire rea-
soning trajectories – in order to enhance the base model’s performance [2, 4]. Typically, such
verifiers are LLMs themselves, often as large – or larger – than the base model they support,
making them computationally expensive.

To overcome this limitation, our work aims to develop computationally efficient verifiers,
which can be used to enhance the performance of the base LLMs in reasoning-intensive tasks.
To this end, we develop LiLaVe – Lightweight Latent Verifier, which is a simple and practical
method for extracting the correctness signal from the hidden states of the base LLM.

2 Method and experiments
Given a question q, an LLM generates an answer sequentially as y = y1y2 · · · ym, where yis
are individual tokens. During the decoding, we extract hidden states hl

t ∈ Rn representing the
activations from the l-th transformer’s layer at the generation of the t-th token, where n is
the hidden dimension of the model. Rather than using all layer-token pairs (l, t), we restrict
extraction to subsets of indices which we determine experimentally.

While the answer y contains the chain-of-thought style reasoning, we determine its correct-
ness solely by looking at the final answer. To evaluate correctness, we compare the generated



Do LLMs know when they are wrong? Piotrowski, Drzewakowski, Staniszewski, Mi loś

Table 1: Performance (AUC) of five methods for predicting the correctness of the LLM’s answers.

benchmark LiLaVe self-reflect logprobs ORM-Mistral ORM-Deepseek

GSM8K (test) 0.86 0.68 0.78 0.81 0.88
GSM-Symbolic 0.84 0.70 0.78 0.85 0.90

GSM-Symbolic-p2 0.78 0.60 0.63 0.73 0.75
algebra linear 1d 0.93 0.61 0.81 0.90 0.90

MATH500 0.88 0.79 0.67 0.79 0.90

final answer to the ground truth, which results in a binary correctness label c. Finally, a dataset
D for training LiLaVe consists of data points in the form of quadruples (hl

t, l, t, c).

Having collected D, we train an XGBoost [1] classifier M to predict the binary label c given
the hidden state hl

t and its location given by the indices l, t. The output score M(hl
t, l, t) ∈ [0, 1]

is to be interpreted as the probability of the response y to be correct.

During inference, the base language model generates a response y along with a set of asso-
ciated hidden states Hy, which are indexed by their locations (l, t). We then apply the trained
XGBoost model M to predict a score sh for each hidden state h ∈ Hy. Finally, these scores are
aggregated, which results in the final correctness estimate, i.e., the LiLaVe score:

LiLaVe(y) = aggregate({sh}h∈Hy
) ∈ [0, 1].

We compare LiLaVe with two natural baseline methods for estimating the probability of the cor-
rectness of the language model’s answer: logprob-based estimator and self-reflection prompting,
as well as two LLM-based verifiers.

Logprob-based estimator: Assume that for a question q, a language model generates
a response y = y1, y2, . . . , yn, where each decoded token yi is given probability pi. For each
question, we compute the sum of log-probabilities over a k-suffix:

∑k−1
i=0 log pn−k. We treat this

sum as an (uncalibrated) estimation of the output correctness. For each dataset, we choose the
suffix length k, for which this estimator achieves the highest AUC score.

Self-reflection prompting: We prompt the same LLM that generated the answer to rate
its confidence in the answer’s correctness on a 1–10 scale.

LLM-based verifiers: We also benchmarked two LLM-based verifiers (aka outcome reward
models, or ORMs), trained on over 250k synthetic examples generated from Mistral 7B and
DeepSeekMath-Instruct 7B, as implemented in [9]. Both of them are based of Llama 3.1 8B,
and fine-tuned to return a real-valued score.

We evaluate LiLaVe and LiLaVe-based meta-generation strategies on four mathematical nat-
ural language Q&A datasets: GSM8K [2], GSM-Symbolic [5], MATH [3], and algebra linear 1d [6].
For each of them we select 1000 training examples to train a dataset-specific LiLaVe. We test
on sets of 500–1319 examples, depending on the dataset.

In Table 1 it can be seen the LiLaVe outperforms self-reflect, logprobs on all benchmarks,
outperforms ORM-Mistral on all but one (GSM-Symbolic), and outperforms ORM-Deepseek
on two benchmarks (GSM-Symbolic-p2, algebra linear 1d), even though both ORMs are a few
orders of magnitude bigger. Given these results, we conclude that LiLaVe excels at extracting
useful signal estimating model’s correctness.

This means that our method can be used in meta-generation strategies, such as weighted
majority voting, where LiLaVe scores are weights of different LLMs answers to a math question,
or conditional self-correction, where LLM is prompted to check and reconsider its answrer
whenever the LiLaVe score of the initial answer is low

2



Do LLMs know when they are wrong? Piotrowski, Drzewakowski, Staniszewski, Mi loś

References

[1] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In B. Krishnapuram,
M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and R. Rastogi, editors, Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages 785–794. ACM, 2016.

[2] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word
problems. CoRR, abs/2110.14168, 2021.

[3] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-
hardt. Measuring mathematical problem solving with the MATH dataset. In J. Vanschoren
and S. Yeung, editors, Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual, 2021.

[4] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s verify step by step. CoRR, abs/2305.20050, 2023.

[5] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and M. Farajtabar. Gsm-
symbolic: Understanding the limitations of mathematical reasoning in large language mod-
els, 2024.

[6] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli. Analysing mathematical reasoning abilities
of neural models, 2019.

[7] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and
D. Zhou. Self-consistency improves chain of thought reasoning in language models. In
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[8] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le,
and D. Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022.

[9] W. Xiong, H. Zhang, N. Jiang, and T. Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

3

https://github.com/RLHFlow/RLHF-Reward-Modeling

	Introduction
	Method and experiments

