LLMs Can Learn Theorem Libraries Through Dialogue to Become
Effective Autoformalizers

Ziyu Zhou Ziwei Li
Czech Technical University Czech Technical University
zhouziyu@cvut.cz liziwei@fel.cvut.cz
Abstract

In this work, we leverage large language models to summarize theorem library files into auxiliary
prompts for the autoformalization task. Under a pass@5 budget, our approach achieves 100% syntactic
accuracy on the MiniF2F-test. The main advantage of this simple pipeline is that it enables low-cost and
timely adaptation to the latest theorem libraries, a capability that is difficult to achieve with traditional
fine-tuning-based methods.

1 Motivation and Background

Automatically translating natural language mathematical propositions into formal mathematical languages
is known as autoformalization. Formal mathematical languages can be used to verify the correctness of
mathematical proofs and serve as training data for reasoning in large models, and are therefore considered
to be of great significance [I4]. However, the manual formalization of mathematics by human scientists is
extremely costly.

The current paradigm mainly focuses on fine-tuning large language models (LLMs) on datasets that align
natural language with formal language [I3][16][12][15]. A key difficulty with this approach is that formaliza-
tion tasks heavily rely on rapidly updated theorem libraries that are not forward-compatible, while existing
datasets often become outdated relative to the latest syntax updates. A frequently auxiliary approach is
to augment generative models with retrieval from the theorem library[6]. However, existing works (e.g., [6]
and [I]) employ retrievers (such as the BGE series models [3]) that are trained on natural language, with-
out fine-tuning for autoformalization tasks, and they still struggle to keep up with theorem library version
updates.

It has been shown that large language models demonstrate robust aptitude for executing rule-based tasks
[8]. Inspired by this, we aim to investigate whether dialogue-based large language models can autonomously
learn a formal language’s theorem library, summarize the underlying concepts and syntactic rules, and then
use those rules to carry out autoformalization. This approach has the advantage of being able to track
the latest theorem libraries and even private projects in real time, providing strong generality. Another
motivation of this work is to build a widely usable autoformalizer at the lowest possible cost. Mathematicians
often lack the computational resources required to train and deploy models. Thus, our goal is to build a
solution entirely based on public APIs, allowing users to reproduce and extend the tool at low cost to meet
personalized needs. At the same time, this also demonstrates that LLMs possess sufficient capabilitiesgiven
appropriate prompts, they can solve complex tasks.

This paper reports an ongoing project. Our upcoming research plans can be found in the [4] section.

2 Methodology

2.1 Pipeline

This project is implemented almost entirely through prompt engineering. The chosen formal language is
Lean 4 [7], which relies on the Mathlib4 theorem library. First, a series of Mathlib4 library files are provided

(1) Summarize

3 Translate

LM

Out

b4

Via
Mathlib4 e

Mathlib4 File 3

LLM

o e

LLM

[Informal Statement
In Out 5) Retrieve

Figure 1: Autoformalizer pipeline. Step 1: Let the LLM summarize key definitions and syntactic rules from
Mathlib4, and maintain an index for retrieval. Step 2: Given a natural language statement, the LLM locates
the corresponding keywords in the index file and matches the summary files. Step 3: Feed both the natural
language statement and the summary files into the LLM to obtain the translation.

to a base model. The model is prompted using a template to summarize the mathematical concepts and
the syntactic rules declared in these files. In practice, theorems in the mathematical library are not directly
used in autoformalization tasks, they can instead serve as examples of how definitions are used. Therefore,
when submitting files to the model, most of the theorems can be removed.

Along with generating summary files, we also maintain an index that records which domains the model
has learned and maps each concept to its corresponding summary file. After completing the Mathlib4
learning process, for any given formalization task, we first submit the library index to the model and ask
which domains from the index are involved in the current natural language statement. The model returns
a query result, which corresponds to several summary files. We then present the relevant summaries to the
model and it uses the knowledge in these summaries to formalize the input natural language.

2.2 Evaluation Metrics

Mathematically equivalent propositions can have different forms, while small differences in phrasing can
lead to completely different meanings. We use Bidirectional Extended Definitional Equivalence (BEq) [6]
and LLM evaluation to assess correctness. The LLM evaluation process is to first informalize the formal
proposition into natural language, and then determine the equivalence of the two propositions in natural
language.

The idea behind BEq is that if the prediction and the ground truth can trivially entail each other, then
they are semantically equivalent. Trivially here means using only a limited set of simple strategies, such
as renaming variables and unfolding definitions. Since formal language proof assistants often lack strong
automation, we use LLM-based tools to perform this mutual entailment. Specifically, we use DeepSeek-
Prover-V2-671B [I0] as the proving model and Lean 4’s official REPL as the interface for model-to-Lean
interaction.

Our evaluation pipeline is as follows: for all outputs that conform to Lean 4 syntax, we first attempt to
prove them using the exact? heuristic. If that fails, we fall back to using the proving model. If this also fails,
the output will be handed over to LLM for verification. Any output that passes any step in this pipeline is
deemed correct.

It’s important to note that this process is still imperfect. The large models BEq relies on may fail to
discover proofs, and LLMs are also prone to false positives [6]. In addition, some work [I8] is attempting to
train an evaluator. Evaluating the correctness of autoformalization still remains one of the main challenges
in this field.

3 Experiments

We use the MiniF2F-test dataset [I7] as our benchmark. The base model is DeepSeek-R1-0528 [4]. Direct
interaction with this model serves as our baseline. We also compare our method with Kimina-Autoformalizer-
7B [12], which is currently the best-performing model trained on several aligned datasets between aligned

natural language and Lean 4. We tested our translator on Lean version v4.23.0-rc2, which is the latest
release as of the time of writing. At the same time, we evaluated the baseline model Kimina-Autoformalizer
on v4.9.0, because the baseline model was trained on data from this Lean version, and appendix [C| shows
that its performance has significantly declined on newer versions. Table [I] reports syntactic accuracy and
semantic equivalence accuracy for one-shot and five-shot sampling. Syntactic accuracy shows how many
model predictions that pass Lean 4 syntax check, and semantic equivalence accuracy shows how many model
predictions that are semantic equivalent to the ground truth label. We observe that the performance of
the base model after learning the theorem library is even higher than the state-of-the-art fine-tuned model.
In particular, the search results can indicate the correct usage of some mathematical concepts, thereby
significantly improving syntactic accuracy. We list some case analysis results in appendix

Table 1: Results on MiniF2F-test. Our improved approach (DeepSeek-R1-0528+Retrieval) leads to a sub-
stantial improvement in accuracy, even surpassing that of fine-tuned models (Kimina-Autoformalizer).

Method Syn. Pass@l Sem. Pass@l Syn. Pass@5 Sem. Pass@5
DeepSeek-R1-0528 75.4% 67.2% 90.6% 87.3%
DeepSeek-R1-0528+Retrieval 93.0% 79.5% 100.0% 96.3%
Kimina-Autoformalizer 88.1% 64.8% 99.6% 90.6%

4 Limitation and Future Work

This is an ongoing project. Some simple techniques can significantly improve performance, such as feeding
back error messages from the Lean compiler to the LLM, although this has not been employed in the present
work. In the future, we plan to test more base models and larger-scale benchmarks such as ProofNet [2] and
Putnambench [I1], and we aim to develop a more powerful generation pipeline, including but not limited to:

o Using LeanExplore [I] , LeanSearch [5] or other retrieval methods to extract the most relevant theorem
library files;

o Enforcing the autoformalizer’s output to follow Lean 4’s syntactic norms, such as by filling in concrete
syntax trees or simulating the behavior of the Lean Parser, as similar methods described in [9];

e Enhancing BEq metrics to provide more precise error localization, not just binary feedback;

o Exploring formalization methods for mathematical proofs, not just propositions.

References

[1] Justin Asher. Leanexplore: A search engine for lean 4 declarations, 2025.

[2] Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics,
2023.

[3] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation,
2023.

[4] et.al. DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025.

[5] Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine for
mathlib4. arXiv preprint arXiv:2403.13310, 2024.

[6] Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving auto-
formalization: towards a faithful metric and a dependency retrieval-based approach. In The Thirteenth
International Conference on Learning Representations, 2025.

[7] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Automated Deduction—-CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings 28, pages 625—635. Springer, 2021.

[8] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow in-
structions with human feedback. Advances in neural information processing systems, 35:27730-27744,
2022.

[9] Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, et al. A survey on text-to-sql parsing: Concepts, methods, and future directions.
arXiv preprint arXiv:2208.13629, 2022.

[10] ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via
reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801, 2025.

[11] George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the putnam
mathematical competition, 2024.

[12] Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal reasoning
models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

[13] Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Information
Processing Systems, 35:32353-32368, 2022.

[14] Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075, 2024.

[15] et.al. Yutong Wu. Stepfun-formalizer: Unlocking the autoformalization potential of llms through
knowledge-reasoning fusion, 2025.

[16] Lan Zhang, Marco Valentino, and Andre Freitas. Formalizing complex mathematical statements with
llms: A study on mathematical definitions. arXiv preprint arXiv:2502.12065, 2025.

[17) Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal
olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

[18] et.al. Zhongyuan Peng. Criticlean: Critic-guided reinforcement learning for mathematical formalization,
2025.

A Prompts Used in Experiments

Summarizer

You are an expert on mathematics and Lean 4 formal language. Your current task is to translate the
given natural language math problem into Lean 4 language. For example, you probably encounter
theorem translation tasks like this:

INPUT: Show that log_{5"2} 54 = 2

OUTPUT:
‘‘‘lean
import MiniF2F

open BigOperators Real Nat Topology

theorem log_base_5pow2_5pow4 : Real.logb ((5 : R) * 2) ((5 : R) * 4) =2 := by
sorry

e

However, since you are not familiar with the mathematical concepts and corresponding syntax rules
in the theorem library Mathlib that the latest version of Lean 4 language relies on (for
example, you may not know logarithms are represented in mathlib as Real.logb), I will provide
you with a part of the Mathlib theorem library files. You need to summarize what information
in them you must follow in your future translation work. You can organize these rule sets in a
text file that you think is appropriate and package them into a file for future reference.

You should follow the template below for summarizing the Mathlib theorem library files:

e

Translation Rules for <math concept>
Core Definitions

<Definitions>

Syntax Rules

<Rules>

Translation Examples

<Examples>

e

Here is an example summary for Mathlib.Analysis.SpecialFunctions.Log.Base:
Translation Rules for Logarithmic Expressions

Core Definitions

1. Real logarithm base ‘b‘ is represented as ‘Real.logh b x°¢
2. Natural logarithm is ‘Real.log‘ (base e)

3. The division ‘log x / log b‘ is equivalent to ‘logh b x‘

Syntax Rules
1. All real numbers must be explicitly typed as ‘R‘ using ‘(x : R)*
2. Exponentiation uses ‘*‘ operator (not ‘*x*°)
3. For bases and arguments that are numerals or variables:
- Wrap numerals in parentheses and type them: ‘(5 : R)¢
- Variables should be declared with type ‘R¢

Translation Examples
1. Basic logarithmic equality:
Natural: log 25 = 2
Lean: ‘Real.logb (5 : R) (25 : R) = 2¢

2. Logarithm with exponentiation:
Natural: log(5%4) = 4
Lean: ‘Real.logb (5 : R) (5 : R) * 4 = 4¢

3. Logarithmic operations:

4 N
Natural: log(xy) = logx + logy
Lean: ‘Real.logb (5 : R) (x * y) = Real.logb (5 : R) x + Real.logb (5 : R) y¢
(with hypotheses ‘hx : x 0, ‘hy :'y 0°)

The demonstration is over, now you have to complete this task. The following code is from

o J
Retriever
4 I

You are a theorem library retriever in a translation system from natural language to Lean 4 code. I
will provide you with a natural language mathematical proposition and an index that links
mathematical concepts and the file names of Lean 4 theorem library summary files. Your task is
to find all the mathematical concepts involved in the given natural language proposition from
the index and then output the corresponding file names.

Here is a template for a task:

INDEX: <math concept> ||| <file_name>
INPUT: <natural language statement>
OUTPUT:

...Thinking. ..

<result>

<file_namel1>
<file_name2>
</result>

Here is an example:

INDEX: Logarithmic Expressions ||| Mathlib_Analysis_SpecialFunctions_Log_Base
INPUT: Show that $\log_5"2 5%4=2\$.
OUTPUT:

In the given natural language statement, the mathematical concept involved is Logarithmic
Expressions. According to the index, this concept corresponds to the file name
Mathlib_Analysis_SpecialFunctions_Log_Base.

<result>

Mathlib_Analysis_SpecialFunctions_Log_Base

</result>

Here is your task:
INDEX:

{index}

INPUT:
{informal_stmt}

OUTPUT:
& /

Translator

-
You are an expert on mathematics and Lean 4 formal language. Your current task is to translate the
given natural language math problem into Lean 4 language. Follow the file header provided

below, do not re-import libraries and re-open namespaces. You should begin your output with
"theorem” and give the theorem an appropriate name. Do not give a proof, just fill it with ‘by
sorry‘ after the theorem statement. Use lean code blocks in markdown format to mark the lean
proposition. You may need to use the concepts and syntax specifications in the theorem
library. I have prepared a cheat sheet for you:

{cheat_sheet}

HEADER:
‘“‘lean
{header}

e

TASK TEMPLATE:

Math Proposition:
<natural language math problem>

Lean Proposition:
‘¢‘lean
<Lean 4 code>

e

YOUR TASK:

Math Proposition:
{informal_stmt}

-

An Example Summary File: Mathlib.Data.Int.GCD

-

Translation Rules for Integer GCD and Bézout’s Lemma

Core Definitions
1. Greatest common divisor:
- ‘Nat.gcd¢ for natural numbers
- ‘Int.gcd¢ for integers
2. Extended GCD coefficients:
- ‘Nat.gcdA x y‘ returns coefficient ‘a‘ for ‘x‘
- ‘Nat.gcdB x y‘ returns coefficient ‘b‘ for ‘y¢
- ‘Int.gcdA‘ and ‘Int.gcdB¢ handle integer inputs
3. Least common multiple:
- ‘Nat.lcm‘ for natural numbers
- ‘Int.lcm‘ for integers

Syntax Rules
1. Natural number literals:
- Use ‘(x : N)‘ for natural numbers
- Example: ‘(5 : N)*¢
2. Integer literals:
- Use ‘(x : Z)* for integers
- Negative: ‘(-3 : Z)*

-

3. GCD expressions:
- For naturals: ‘Nat.gcd x y°¢
- For integers: ‘Int.gcd x y°¢
4. Bézout’s lemma statements:
- Use ‘gcd_eqg_gcd_ab“ theorem
- Format: ‘(gcd xy : Z) = x *x gcdA x y +y *x gcdB x y*

Translation Examples
1. Basic GCD property:
Natural: gcd(6, 9) = 3
Lean: ‘Nat.gecd (6 : N) (9 : N) = 3¢

2. Bézout’s identity:
Natural: There exist a,b such that gcd(15,25) = 15a + 25b
Lean: ‘(Nat.gcd (15 : N) (25 : N) : Z) = 15 * Nat.gcdA 15 25 + 25 x Nat.gcdB 15 25°

3. Integer GCD:
Natural: gcd(-4, 6) = 2
Lean: ‘Int.gcd (-4 : Z) (6 : Z) = 2¢

4. LCM property:
Natural: lcm(4, 6) = 12
Lean: ‘Int.lcm (4 : Z) (6 : Z) = 12°¢

5. Divisibility statement:
Natural: If a divides b*c and gcd(a,c)=1, then a divides b
Lean: ‘theorem dvd_of_dvd_mul_left_of_gcd_one {a b ¢ : Z} (habc : a | b x ¢) (hab : gcd a c = 1)
:a| b
- J

B Case Study on Syntax Repair
Natural Language Problem:

The greatest common divisor of positive integers m and n is 6. The least common multiple of m and n is 126. What
is the least possible value of m + n? Show that it is 60.

An example of code that was incorrectly translated by the model:

theorem min_sum_of_nats_with_gcd_6_1cm_126 :
(Amn: N, 0<mAO<nAgcdmn=6Alcmmn=126 Am+n =60) A
(Wmn:N,0<m—>0<n—>gcdmn=6 — lcmmn =126 — 60 < m + n) := by sorry

The summaries of Mathlib.Data.Int.GCD (presented in Appendix , Mathlib.Data.PNat.Prime,
Mathlib.NumberTheory.Divisors and Mathlib.Data.Finset.Basic are provided to the translator, giving the
correct result:

theorem gcd_lcm_sum_min :
(3mn: N, 0<mAO@@<nANat.gcdmn=6 A Nat.lecmmn =126 A m+ n = 60) A
(Wmn:N,0<m—=>0<n— Nat.gcdmn=6 — Nat.lemmn =126 — 60 < m + n) := by sorry

As can be seen, the model has learned the correct syntax of the greatest common divisor ‘gcd® and the least
common multiple ‘lcm‘.

C Kinima-Autoformalizer syntax pass rate on different versions
of Lean

We examined the output of the baseline model Kinima-Autoformalizer across three Lean versions: v4.9.0 is
the dependency version of baseline and the Deepseek Prover series models [I0], and it was released one year
ago (July 1, 2024); v4.19.0 was released six months ago (March 1, 2025); and v4.23.0-rc2 is the latest version
(August 15, 2025). From this, we can clearly observe that newer versions of Lean provide increasingly less
support for older syntax. Especially, the most recent version of Lean has completely deprecated the syntax
using 'in’ to specify the index range in summation and product operators. This change significantly affects
the syntactic accuracy of models trained on the older version of the mathematics library.

Table 2: Kinima-Autoformalizer syntax pass rate on Lean v4.19.0 and v4.23.0-rc2

Lean version Syn. Pass@l Syn. Pass@5

v4.9.0 215/244 243/244
v4.19.0 213/244 242/244
v4.23.0-rc2 200/244 237/244

	Motivation and Background
	Methodology
	Pipeline
	Evaluation Metrics

	Experiments
	Limitation and Future Work
	Prompts Used in Experiments
	Case Study on Syntax Repair
	Kinima-Autoformalizer syntax pass rate on different versions of Lean

