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1 Introduction

Autoformalization is the task of automatically translating mathematical content written in nat-
ural language into formal language expressions. This process has gained significant traction due
to advancements in the language interpretation capabilities of Large Language Models (LLMs).
These models, with their expanding proficiency in formal languages, are progressively lowering
the barriers to effective autoformalization. However, LLMs alone are insufficient to consistently
and reliably deliver autoformalization, especially as the complexity and specialization of the
target domain increase.

A major obstacle for autoformalization is the lack of training data. Therefore, often, data-
generation for this task is needed [3].

This project targets data generation for the autoformalization task in the context of universal
algebra.

2 Project Plan

In this project, we present a framework that leverages the Phi4 (14B) model [5, 6] to informalize
mathematical expressions from the MARCIE [2] database, which contains around 400 formal
classes represented in Prover9 [7]. In addition to informalizing these classes, the framework also
generates new equivalent representations by employing a tool called Replace, part of ProverX [1]
(A tool developed to integrate Prover9 with a scripting language), which systematically alters
axioms while preserving the rules and semantics of the class involved. This process generates a
diverse set of equivalent classes, which differ in this case in one axiom only, ensuring that the
generated class with the new axiom is still equivalent to the original class. With this process, we
can produce a significant amount of new classes generating tons of equivalent representations
for each axiom of all classes. This is particularly useful by ensuring quality of the data aswell
as size, a crucial factor for using/training LLMs.

To ensure the validity of the informalization process, our framework employs a verification
method that formalizes the generated informal expressions back into Prover9 syntax and checks
their equivalence with the original expressions. This validation guarantees a high-quality in-
formalization when the equivalency holds. By providing a reliable and scalable approach to
informalization, this work significantly contributes to advancing autoformalization tasks, par-
ticularly in the context of creating robust mathematical databases, to further use with the
proverX tool [1].
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3 Background and Related Work

Recent advances in machine learning have sparked interest in autoformalization [8, 10]. Welleck
et al. [9] demonstrated the potential of LLMs in bridging natural and formal languages for
mathematical reasoning. Similarly, Jiang et al. [4] explored how LLMs can assist in drafting
formal proofs.

Paster et al. [3] introduced MathConstruct, a framework for generating synthetic data to
support mathematical formalization tasks. Our approach builds upon this concept but focuses
specifically on algebraic structures.

4 Methodology

Our methodology consists of three main phases:

1. Data Collection: We utilize the MARCIE database [2] as our primary source of formal-
ized algebraic structures, generating even more examples with the replace function.

2. Informalization: We employ the Microsoft Phi-4 model [5, 6] to translate formal ex-
pressions into natural language while preserving the mathematical meaning.

3. Validation: We verify the quality of informalization by converting the natural language
back to formal language and checking equivalence with the original formalization using
ProverX [1].

5 Expected Outcomes

We anticipate this project will yield:

• A comprehensive dataset of paired formal-informal representations of algebraic structures

• Enhanced techniques for informalization and formalization of algebraic expressions

• Insights into how LLMs comprehend and manipulate algebraic concepts

• A robust framework for extending autoformalization to other mathematical domains
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