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Abstract

We show that final-answer datasets are not a reliable signal to measure the capabilities
of LLMs to carry out proofs correctly. We highlight, on a novel benchmark of uncontami-
nated problems, PROOFLESS, how it is possible for LLMs to guess the right answer while
failing to produce correct proofs and introduce new terminology regarding the ways an
answer can be guessed without completing a full proof. This shows that hill-climbing with
these types of datasets will—perhaps unexpectedly—mnot necessarily lead to LLMs with
strong math reasoning capabilities, but rather to LLMs with strong abilities to carry out
mathematical heuristics, and brittle proof generating abilities.

1 Introduction

The current landscape of natural-language mathematical benchmark datasets is overwhelm-
ingly dominated by answer-only formats, where problems are paired solely with final solu-
tions rather than the intermediate reasoning or derivation steps. Important examples are the
MATH dataset [HBK " 21] and the GSM8K dataset [CKB™21], which have been important “hill-
climbing” datasets, used to measure the mathematical performance of large swaths of large
language models (LLMs). Further notable examples of final-answer datasets are Olympiad-
Bench [HLB*24], UGMathBench [XZC"25], or the mathematical part of the Humanity’s Last
Exam dataset [PGHT25].

In all such benchmark datasets, the mathematical problems are designed so that several
reasoning steps need to be carried out to arrive at a solution that is a single token (e.g., an
integer, a matrix, etc.), that the LLM is typically instructed to provide at the end and that
can be easily extracted. This token is the only signal that is used to assess the correctness of
an LLM-generated proof, by matching it to the ground-truth answer.

While some limitations of these benchmark datasets have been noted for non-proof-based
tasks—such as testing an LLM’s ability to follow multi-step reasoning or find counterexamples,
see [FBCT24]—they also fall short within proof-based tasks, as final-answer datasets provide
insufficient assurance that the reasoning process was carried out correctly.

2 Results

To highlight that final-answer mathematical datasets may not be a good “hill” for LLMs to
climb if LLMs are to become proficient natural-language proof generators, we have introduced a
novel benchmark of questions whose final-answer is sufficiently easy to find, but whose fully
correct proof is hard, called PROOFLESS: Problems Requiring Only Output, Foregoing
Logical Ezxplanations in Solver Steps.
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It consists of uncontaminated Olympiad-level math problem that were carefully created to
ensure that the final answer can be guessed in certain ways. We present here a growing list
of the possible undesirable approaches that allow LLMs to get to the correct answer while not
having sufficient insight to construct a ‘proof’ for a question:

e Direct bash: A model could simply enumerate all possible cases to get to the correct
answer.

This strategy also commonly appears in number theory problems where the model checks
all possible ‘small’ solutions which turn out to cover the whole solution set. This is not a
complete proof and showing these are the only solutions is the bulk of the work of such
a problem.

e Smart-guessing: A problem may have a natural construction that a model conjectures

to be optimal. This allows it to calculate the correct bound without having any proof of
optimality.
Alternatively, a model may guess that solutions/optimal configurations have specific prop-
erties beyond what is given in the problem statement (e.g., only considering integers when
the question allows for real numbers). This gives another route to a correct answer without
having a complete proof.

e Pattern spotting: In a problem with a parameter n (e.g., grid size), a model may
consider small values of n and then be able to guess a general formula for the answer f(n)
(e.g., n? —1). This allows it to calculate the answer for large n with no proof.

e Natural guessing: If there are few numbers in the question statement and these, or
small variations on these (e.g., n/2 by a parity argument) turn out to be the correct
answer, a model may arrive at these with either no proof or an invalid proof.

e Other bashing: Models may have access to computer algebra, including libraries that
allow for symbolic algebra. This means, for example, it could solve systems of equations
or reduce systems of inequalities by pure manipulation in a way that is not possible for
humans. Some symbolic manipulations would constitute a valid proof, however using
numerical methods to arrive at an answer would not.

We have annotated our problems according to the ways in which LL.Ms can guess the answer,
while not exhibiting a correct proof. Because this is work in progress, we do not provide the
total number of problems in our current benchmark, but aim to release them at the time of the
conference. One example of a problem of direct bash-type is contained in the Appendix A.

3 Conclusion

Our assessment shows that a pivot is needed to arrive at LLMs that can output correct proofs,
in natural language. While various frameworks could be added on top of LLMs, for example by
making use of autoformalization tools to reprompt until a guaranteed correct proof is generated,
these, on one hand, suffer from the limitations of the autoformalizer and on the other will not
lead to improved core LLM reasoning capabilities.

We conclude with a call for devising more human-in-the-loop evaluations of LLMs outputs,
as a first step, to ensure that the generated mathematics is of a sufficiently high standard.
Although we acknowledge this approach does not scale, to date too few datasets exist that
inspect LLMs’ proof output in detail [FPG*23, PDB'25, CJF24]. Further evaluations are
needed to understand the ways LLMs fail, expanding the list of errors introduced in [FPGT23],
so that with targeted interventions LLMs improve in these domains.
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A Appendix: A Problem Whose Generated Proof Has
Correct Final Answer But Erroneous Proof

The following problem is a novel problem, thus not contained in the training data of any of the
LLMs. We report below the output of DeepSeek-R1-Distill-Qwen-32B after the </think>
token has been issued. This is thus the final, condensed proof that this LLM generates, after
its thinking stage has concluded. This problem is of direct bash type, where a model is able
to come up easily with a correct final answer, yet provide an incomplete proof.

Problem: Let n be a positive integer. We call a prime p > 2 n-special if
p?+1|nf —1.

What is the product of primes p > 2 that are 10001-special?

LLM output:

To determine the primes p that are 10001-special, we need to find primes p such that
p? + 1 divides 100017 — 1.

First, we note that 10001 factors into primes as 10001 = 73 x 137.

We start by checking primes p for which p? + 1 divides 10000, since 10001 — 1 = 10000.
The divisors of 10000 that are one more than a perfect square are 2, 5, 10, and 50,
corresponding to p? 4+ 1 where p is a prime. This gives us the primes p = 2,3, 7.
Next, we verify if these primes satisfy the condition 10001” = 1 mod (p? + 1):

1. For p=2: 22 +1 = 5. Since 10001 = 1 mod 5, 100012 — 1 = 0 mod 5. 2. For
p=3:3%2+1=10. Since 10001 = 1 mod 10, 10001> —1 =0 mod 10. 3. For p = 7:
72 4+ 1 = 50. Since 10001 =1 mod 50, 10001” —1 =0 mod 50.

We also checked other primes and found that they do not satisfy the condition, as their
corresponding p? 4+ 1 do not divide 100017 — 1.

Thus, the primes that are 10001-special are 2, 3, and 7. Their product is:

2X3XT7T=42

The final answer is:

The passage in red simply asserts all other primes have been considered—showing these
primes are not m-special is the hard part of the problem. The <think> part of the output
considers primes ¢ | p? + 1 and notices that ord,(n) € {1, p} but does extend this to a complete
proof. To go from this to a complete proof, we need the following additional argument:

Firstly, we show that p = 2,3,7 are solutions as is done by the model. Now consider
p €4{2,3,7}. Asp is prime, ordg(n) € {1,p}. We consider the two cases:

o Iford,(n) =p, then from Fermat’s Little Theorem we conclude p | ¢ — 1.

Write ¢ = kp + 1 and notice this also divides k(p*> + 1) — p(kp + 1) = k — p, which, since
qg>kandq > p forces k —p = 0. In this case, ¢ = p> +1 > 2 is prime so must be
odd which forces p = 2 ais p must be even whicheven so p = 2 which we have already
considered.
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o Iford,(n) =1, then g | n — 1. Consider
nP —1=n-1mn"14 - +1).

Note that n =1 mod q, so the factor n?~' + ... +1=p# 0 mod q since q | p> +1 so
can’t be equal to p. Therefore, vy(n? — 1) = vy,(n — 1).

For p # 2, the second case must hold for all primes q therefore we have p>+1 | n—1 = 10000 =
24.5%. Since p?+1 =2 mod 4 (because p is odd), we have p> +1 € {2,2-5,2-5% 2.53 2.5},
An easy check shows that p = 3,7 are the only possibilities.
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