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1 Introduction

It has become widely recognized in recent years that large language models (LLMs) possess
a certain capacity for logical reasoning and its arithmetical extensions, including the ability
to construct proofs. However, many of these successful instances might be attributable to the
reuse and combination of lemmas contained in the training data. This corresponds to the use
of pre-existing lemmas in libraries of automated theorem proving and proof assistant systems.

In this study, we focus on proof construction within the domain of elementary arithmetic,
under conditions that restrict access to such lemmas. Specifically, we investigate the extent to
which LLMs can construct proofs involving mathematical induction of varying complexity, using
the depth of nested induction as a measure of complexity. Furthermore, we evaluate whether
LLMs can generalize to more complex inductive proofs when given examples of simpler ones
in a few-shot prompting setting. This research project is in its early stages, and we report the
goals and current progress.

2 Direct induction proofs with multiply nested induction

Research on the automation of mathematical induction dates back to the 1970s [1], with founda-
tional systems such as the Boyer-Moore theorem prover pioneering mechanized reasoning with
induction. Modern proof assistants such as Coq and Lean provide robust support for inductive
types and user-guided inductive reasoning. However, despite these advancements, the full au-
tomation of inductive proofs remains a significant challenge. In practice, users are still required
to manually design induction schemas or supply key lemmas, and general-purpose automation
often fails to scale beyond relatively simple proofs.

Meanwhile, the application of LLMs to mathematics has been rapidly progressing [6]. Dean
and Naibo [2] analyzed the proof capabilities of current LLMs in detail by classifying logi-
cal formulas based on their complexity in the arithmetical hierarchy. In contrast, we focus
specifically on mathematical induction—an area where theorem proving still faces significant
challenges—and analyze LLMs’ ability to construct inductive proofs.

LLMs tend to employ induction in a shallow manner, often relying on existing libraries of
lemmas. To investigate how well LLMs can support proofs involving nested induction, we focus
on what we call direct induction proofs. Suppose an inductive data type is given, along with a
set of primitive recursive function definitions induced from it. When the structural induction
principle is provided as an inference rule, we define a direct induction proof as a proof of a
universally quantified equation that is constructed solely from the given definitions and the
structural induction principle—that is, without invoking any auxiliary lemmas. We assume
equational logic as the background logic.



Among various inductive data types, a fundamental case is that of the natural numbers.
Skolem’s [7] quantifier-free Primitive Recursive Arithmetic (PRA) corresponds to this setting,
where the inductive type is the natural numbers. For the purposes of this study, we primarily
focus on a fragment of PRA in which addition and multiplication are defined directly. This
fragment is sufficiently rich in that it allows multiply nested induction, making it a valuable
first step for examining the automation of direct induction proofs.

3 Pilot Experiments

Data and Tasks: In this preliminary report, we constructed a set of arithmetic statements
involving addition and multiplication. Specifically, we created 20 problems in total, with 5
examples each containing between one and four variables. For each problem, we instructed
LLMs to generate two types of proofs: an informal proof in natural language and a formal proof
written in Lean 4 (https://lean-lang.org/). We then manually examined the correctness of
two types of proofs.

Previous work [5] has shown that in basic logical reasoning tasks such as syllogisms, prompt-
ing LLMs to produce logical formulas followed by explanations based on them can improve
accuracy. We aim to test whether a similar effect can be observed in mathematical proof
construction. In addition, generating Lean code makes it easier to automatically verify the
correctness of proofs using the proof assistant itself.

Experimental Setting: In this experiment, we used OpenAI’s gpt-3.5-turbo and gpt-4o [4, 3]
via the API, as a baseline and a more advanced model, respectively. We set the temperature to
0 and the maximum number of output tokens to 2000, while leaving other parameters at their
default values.

In the prompt for Lean proofs, we instructed the model to follow these constraints: (1)
do not use any predefined lemmas; (2) use only mathematical induction on natural numbers,
including nested induction if necessary; and (3) do not use any automated tactics. For the
prompt requesting informal proofs, we gave the models similar instructions.

We also gave two-shot examples: one for a proof of a + succ(0) = succ(a), and another
involving double induction for the statement a+ b = b+a, along with the definitions of natural
numbers, addition, and multiplication.

Results and Analysis: As an initial result, the following observations were made: With
gpt-4o, for informal proofs, correct proofs were obtained for 7 out of 20 problems. For formal
proofs, only 1 correct proof was produced. With gpt-3.5, correct proofs were generated for 3
problems in the informal proof setting, and only 1 in the formal proof setting.

Regarding the generalization abilities of LLMs in theorem proving, the following results were
observed: (1) Despite not being given any examples involving multiplication, there were cases
in which the model constructed correct direct induction proofs involving multiplication. (2)
Although only examples of double induction were provided, there were instances in the formal
proofs where the model attempted to use triple or deeper nested induction. However, these
proofs were not correct. (3) A common error pattern was the failure to adhere to the provided
definitions, with many proofs including unproven steps such as succ(a) + 0 = succ(a), even
though the definition is 0 + succ(a) = succ(a). (4) Additionally, many proofs were found to be
correct but not direct induction proofs, as they relied on auxiliary lemmas.

Future Work: We plan to provide Lean error messages as feedback to the LLM, enabling it to
iteratively refine its proofs. We will also conduct evaluations with automated theorem provers
that support mathematical induction. Furthermore, we aim to extend our experiments within
the framework of PRA to encompass functions beyond addition and multiplication. Finally,
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we intend to broaden our investigation to include more general inductive data types, allowing
for an evaluation of mathematical induction in the context of more general forms of structural
induction.
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