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1 Introduction

Large language models (LLMs) are demonstrably useful, but at the same time, there is a growing
concern that their users easily obtain and use incorrect results [7].

In a recent experiment, Sutcliffe et al. suggest that LLMs can easily fail on basic logic
puzzles [6]. The authors study an example where the LLM’s answer is in fact correct but
the reasoning steps are not. This is of course an issue because the users are also interested
in the explanation but because the text looks convincing, they might easily overlook that the
explanation is incorrect.

In this project we will focus on checking individual steps of an LLM by automated reasoners,
such as satisfiability modulo theory solvers (SMT) [1] and automated theory provers (ATP) [4].
Our goal is to augment the LLM with a formal verification step that can be used to find errors
in the reasoning steps of the LLM and use these errors as a feedback to improve the LLM.

2 Project Plan

Correctness checking of LLMs is a task of astronomical dimensions; control experiments are
needed at this stage of the research. As a starting point, we will use the TPTP [5] puzzle
category.1 The advantage is that the problems contain an English description as well as its
formalization. In fact, the experiment by Sutcliffe et al. already focuses on PUZ001+1.p, which
deals with the “Who killed aunt Agatha?” puzzle [3].
The project will be carried out in the following steps.

1. Collect and generate puzzle problems.

2. Evaluate correctness of answers for various proprietary and open-source LLMs and check
their failure modes.

3. Ask LLMs to generate formalization of steps and use ATPs to check them.

4. Integrate with AI agent protocols [9] to LLM directly use the reasoners as guidance.
Inspirations will be sought in the work by Szeider, who used the Model Context Protocol
to interact with constraint programming solvers [8].

5. Fine-tune a local LLM based on wrong answers.

6. Implement a learning loop in which the LLM generates solutions and learns from the
feedback provided by the solver.
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1https://tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=PUZ
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3 Preliminary Data

Puzzle ID ChatGPT Claude Gemini Flash DeepSeek

024-1 Pass Pass Pass Pass
025-1 Pass Pass Pass Pass
026-1 Pass Pass Pass Pass
028-1 Pass Pass Pass Pass
029-1 Fail Fail Fail
031 10 Pass Fail Fail
032-1 Pass Pass Pass
033-1 Pass Pass Pass
054-1 Pass Fail Pass Pass
078+1 Fail Pass Fail
082ˆ1 Pass Pass Pass
087ˆ1 Pass Pass Fail
088ˆ5 Pass Pass Pass Pass
128+1 Pass Fail Pass
129+2 Pass Pass Pass
130 10 Pass Pass Pass
131 10 Pass Pass Pass Pass
132+1 Pass Pass Pass Pass
134 10 Pass Pass Pass Pass
135 10 Pass Pass Pass Fail
147ˆ1 Pass Pass Pass Pass
148ˆ1 Pass Fail Pass Pass
150ˆ18 Pass Pass Fail Fail

precision 91% 84% 82% 74%

Table 1: LLMs’ answer correctness on 23 puzzles from TPTP

As a preliminary experiment, we collected 200 puzzles from TPTP, but only 23 of them
have an English description. To test LLMs on these puzzles, we ran ChatGPT unpaid version
on chatgpt.com, Claude AI 3.5 Sonnet on claude.ai, Gemini on gemini.google.com, and
DeepSeek-V3-0324 on GitHub Models. Gemini 2.5 Pro has a low rate limit so we chose to use
Gemini 2.5 Flash. ChatGPT gave correct answers to 91% queries. Claude AI 3.5 Sonnet solves
84%; Gemini 2.5 Flash 82%; DeepSeek 74%. The results are displayed in Table 1.

The results indicate that the existing LLMs perform well on the existing puzzles. However,
currently, we do know not know whether the reasoning steps are also correct and how well the
LLMs perform uner reformulations of the problems. Since the number of puzzles collected is
low, we intend to generate new puzzles—this will be done by first generating a problem at the
formal level that has a unique solution and the informalizing it, cf. [2].
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