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1 Introduction

Learning to construct new, interesting, and useful lemmas for proof assistants is an important
yet underexplored area in Al for mathematical reasoning [11]. Such lemmas can aid a human
user working on a mathematical formalization, as well as strengthen automated theorem provers.
In this work, we examine how LLMs can be used for lemma generation, and how they can be
combined with symbolic tools for optimal results. Our aim is to to provide a first tool towards
generic conjecturing over a broad range of mathematical theories, which is practically useful for
users of proof assistants.

A weakness of LLMs is that they sometimes generate repetitive or redundant lemmas, fail to
discover more novel and useful lemmas, or hallucinate undefined symbols in the formalization.
Furthermore, there are no correctness guarantees on the LLM’s output, so the generated lemmas
may simply be false. These challenges have been encountered in previous work on neural
conjecturing [10, 7, 5]. Symbolic methods, on the other hand, can be designed and programmed
to avoid repetition and redundancy. However, symbolic methods will only generate lemmas that
fit a predefined specific search space, and tend to scale poorly to a larger search space. Previous
symbolic tools [9, 3, 8] have been used to successfully discover, for example, lemmas needed in
automated (co-)inductive provers [4, 2, 1, 6]. However, these tools are limited in the shape, size
and domain of lemmas they can generate, and do not scale well to larger sets of inputs.
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novelty, while keeping the search space manageable. As far as we are aware, this is the first
work focusing on neuro-symbolic lemma conjecturing.
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2 Evaluation and Preliminary Results

As a challenging first evaluation step we measure the coverage of (test-set) lemmas that can be
recovered by LEMMANAID from Isabelle’s HOL library! and from its Archive of Formal Proofs
(AFP)2. We compare the results of LEMMANAID configured with different LLMs (DeepSeek,
Llama3), focusing on small LLMs as our ultimate aim is to create something that is accessible
for regular proof-assistant users without need for huge compute resources.

We create a file-wise split of the HOL library so that we may evaluate the in-distribution
capabilities of LLM-based approaches for lemma conjecturing tasks. Next, we supplement our
training data with all projects from the AFP2024 that are published prior to 2024. We then
create a new test set called AFP-test comprised of 31 AFP projects published in 2024 (and thus
disjoint from the HOL+AFP training set). Training models on HOL+AFP-train and evaluating
on HOL-test allows us to understand the effect of more training data as opposed to training on
only HOL-train. Training models on HOL+AFP-train and evaluating on AFP-test allows us to
evaluate an out-of-distribution task.

We define lemma success rate as the percentage of these lemma prediction tasks for which
the given method is able to successfully generate (as part of the set of lemmas it generates) the
ground-truth lemma (where we compare lemmas syntactically). This overall metric measures
the performance of a method end-to-end.

HOL-train HOL+AFP-train
Method HOL-test AFP-Test HOL-test AFP-Test
LEMMANAID 23.0% 6.5% 18.9% 6.8%
Neural 21.3% 4.3% 19.7% 7.0%
Combined 28.5% 8.0% 26.2% 10.1%

Figure 2: Lemma success rates.

The results found using the Deepseek-coder-1.3b model are shown in (Figure 2). The results
found using the Llama3 model were similar but slightly lower numbers. We see that LEMMANAID
trained on HOL-train outperform the respective neural baselines on all test sets. We also see
that, while LEMMANAID does not greatly outperform neural methods, it is complementary to
them, conjecturing more lemmas together. We see that on AFP-test, the performance drops for
all variants trained on HOL-train. This is unsurprising, as the lemmas in AFP projects are more
diverse than those in HOL. Still, LEMMANAID is complementary with neural-only methods on
AFP-test. We see that when trained on HOL+AFP-train, both LEMMANAID’s and the neural
baseline’s performance drop on HOL-test. Notably, the neural baseline’s performance increases
greatly on AFP-test when trained with more data. In ongoing further experiments we have seen
the HOL-train/HOL-test result for LEMMANAID increase from 23.0% to 24.94% by adding more
contextual information and further to 32.9% by using beam-search rather than greedy decoding,
and we’re looking forward to seeing how those changes may also improve results in the other
columns.

We note that our experimental setup most likely under-reports results, as we measure matches
with one specific target-lemma. It is entirely possible that LEMMANAID sometimes comes up
with a different target lemma from the same theory, or even additional lemmas that are valid
and useful but not present in the existing formalization. We have not yet explored the full
potential of neuro-symbolic conjecturing for proof assistants.

Ihttps://isabelle.in.tum.de/dist/library/HOL/index.html
2https://www.isa-afp.org
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