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1 Introduction

Graph neural networks (GNNs) have been recently applied to many combinatorial optimiza-
tion and feasibility problems, very often by making ad hoc architectural decisions. In this
contribution, we explore the possibility of obtaining a GNN architecture in a more principled
fashion.

We assume that the GNN in question is recurrent which means that the same message-
passing equations are used in each time-step. The equations of such a GNN describe a dynamical
system. The question is, therefore, how to design a dynamical system whose fixed points are
solutions to the problem at hand. We show that the equations of a GNN can be systematically
derived by starting with an ILP formulation of the problem, deriving a primal-dual algorithm
for it, and then relaxing the discrete constraints by lifting the variables into a high dimensional
space. The dynamics therefore evolves the high-dimensional vectors corresponding to primal
and dual variables and rounding is done by standard methods used in SDP relaxations. The
resulting equations can then be parametrized and fine-tuned to a desired problem distribution.
In our contribution, we will show how to derive such equations for the Boolean satisfiability
problem.
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Figure 1: LCG and VCG of the CNF formula (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3).

Selsam et al. [3] demonstrated that a GNN can be used to decide satisfiability of Boolean
formulas and that it is possible to extract a satisfying assignment from the literal embeddings.
Their GNN (called NeuroSAT) operates on bipartite literal-clause graphs, where each literal is
connected to the clauses that contain it and also to the literal with opposite polarity as seen
in Figure 1 (left). The NeuroSAT architecture is recurrent in the sense that the embeddings of
the literals and clauses are updated iteratively, in an alternating fashion, by two LSTM update
functions. This feature allows to scale to number of node updates during test time.

Hula et al. [1] empirically demonstrated that NeuroSAT is able to decide satisfiability by
acting as a MaxSAT solver, which tries to greedily maximize the number of satisfied clauses
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(Figure 2). In a subsequent work Mojzisek et al. [2] explored this direction further and provided
a simplified architecture which operated on a variable-clause graph (Figure 1 (right)) and uses
a simple RNN instead of the LSTM update function.
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Figure 2: The gap between the average number of unsatisfied clauses for the optimal assignment
and the assignment found by the GNN, visualized over the iterations. Individual curves corre-
spond to different benchmark sets; the numbers in the legend denote the number of variables
within a formula.

We show that the equations of the GNN can be further simplified and moreover can be
systematically derived by starting with a definition of the problem and deriving a primal-dual
algorithm for it. We start with the equations provided by [2] and show them in a matrix form
where variable embeddings at time step k are represented as rows of the matrix Xk (same for
clause embeddings in Λk) :

Xk+1 = proj∥Xi∥=1(RNN1(X
k, (A+T

f1(Λ
k) +A−T

f2(Λ
k))) (1)

Λk+1 = proj∥Λi∥=1(RNN2(Λ
k, A+f3(X) +A−f4(X

k+1))). (2)

Guided by the primal-dual derivation, we manage to simplify the equations to the following
form:

Xk+1 = proj∥Xi∥=1(X
k + (A+T

f1(Λ
k) +A−T

f2(Λ
k))) (3)

Λk+1 = projΛ≥0(Λ
k + (A+f3(X

k+1) +A−f4(X
k+1)) +B). (4)

We use proj∥Xi∥=1 to denote a normalization layer which normalizes the rows of Xk to unit
norm. The functions fi (also applied row-wise) are 2-layer MLPs and create the messages which
are then aggregated over the ”positive” and ”negative” edges (by matrix multiplications with
A+ and A− respectively).

This elegantly explains the mechanism by which a GNN is able to find a satisfying assign-
ment for the CNF formula and opens a door for transfer of many techniques used in numerical
optimization to the GNN framework because such equations can be derived for arbitrary opti-
mization or feasibility problems.
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