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1 Introduction

Pigeonhole principle problems provide challenging problems for SAT solvers. This is inherent
since they lead to exponential resolution proofs [4], meaning that the resolution proof of the fact
that n + 1 pigeons cannot be distributed into n holes grows exponentially with n; exponential
lower-bounds are also known for other variants [5].

On the other hand, Cook [2] showed how relatively short proofs can be constructed when
using extended resolution [6], which allows introducing definitions. In essence, when attempting
to prove Pigeonhole with n + 1 pigeons and n holes, one makes definitions and proves lemmas
that reduce the problem to Pigeonhole with n pigeons and n — 1 holes. We describe code that
can solve such problems following this approach. We then discuss the possibility that machine
learning could be used to automatically suggest the definitions and lemmas.

2 Extended SAT Solving

We have implemented code that can read a SAT problem (a set of input clauses) and a sequence
of commands to solve the SAT problem. There are three kinds of commands:

e Definition: Make a definition of a new atom ¢ of the form p Vv p’ or p VvV (p A p”) using
existing atoms p, p’ and p”. This adds new definition clauses to the current clause set.

e Lemma: Prove a new clause and then add the clause to the current clause set. The new
clause is proven by calling a SAT solver.

e Delete: Delete a clause from the current clause set.

After each command has been processed there is a final call to a SAT solver with the current
clause set. The system is similar to DRAT [7], but simpler and focusing on extended resolution.
Thus, in total, a SAT solver is called N +1 times, where N is the number of Lemma commands.
The two SAT solvers we use are CaDiCaL 1.3.1 [3] and CaDiCaL 2.1.3 [1].

The formulation of Pigeonhole with n pigeons (and n — 1 holes) is as in Cook [2]. Let P; ;
be the atom meaning Pigeon ¢ is in Hole j, with 0 < ¢ < n and 0 < j < n — 1. The input
contains (n — 1)(}) 2-literal clauses ensuring that no two pigeons are in the same hole and n
(n —1)-literal clauses ensuring each pigeon is in at least one hole. CaDiCaL 2.1.3 proves the 10
pigeon case in 3.2s, 11 in 19.6s and 12 in 5m29s. Perhaps surprisingly, CaDiCalL 1.3.1 performs
better, proving the 10 pigeon case in 0.4s, 11 in 1.8s, 12 in 11.1s, 13 in 42.5s and 14 in 4mb7s.
Since neither can prove the case with 15 pigeons within 5 minutes, we take this as the easiest
difficult example.

Following Cook’s idea, we start with a sequence of definitions, followed by a sequence of
lemmas corresponding to the problem with n — 1 pigeons and n — 2 holes. After the lemmas are
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proven, we delete the clauses before proving the lemmas and continue. At this point, we can
again make definitions, prove lemmas, and delete previous clauses to again reduce the number
of pigeons. Once there are at most 11 pigeons, we simply make a final call to the SAT solver
to complete the proof.

Consider the case with 15 pigeons. We begin with the initial 1,485 clauses using atoms P; ;.
We follow this with 182 definitions: Q; ; is defined as P; ; V (P;13 A Pi4,5) with 0 < ¢ < 14 and
0 < j < 13. The idea is that Q now gives an injection from the first 14 pigeons into the first
13 holes. We prove 14 lemmas for each i there is some j such that @; ; holds. This could be
followed by many lemmas ensuring () never sends two pigeons to the same hole, but we obtain
better results if we efficiently prove that if @) sends a pigeon before Pigeon i into Hole j, then
it does not send Pigeon ¢ to Hole j. To make this efficient we make 169 definitions allowing
us to refer to atoms equivalent to \/i,e{07‘._,i_1} Q5. This is followed by 169 lemmas which
essentially say

( \/ Qirj) = ~Qi ;-

i/€{0,...,i—1}

We can then delete the input clauses and continue. The resulting state essentially has reduced
the problem from 15 pigeons to 14 pigeons. Accordingly, we repeat the process of making
definitions, proving lemmas and deleting clauses to reduce to 13 pigeons. We continue this
until we have reached 11 pigeons at which point we make the final call. In total, we make 1,114
definitions, prove 584 lemmas and delete 3,838 clauses. The entire proof (including all SAT
solver calls) takes 3.3s. Using a similar process we can prove the case with 30 pigeons in just
over 3 minutes.

3 Can These Recipes Be Learned?

Of course, we are essentially checking an explicitly given proof as we are including the definitions,
lemmas and deletions as commands. It would be more exciting to use some machine learning
techniques to generate and suggest these commands. In order to do this, the “suggester” would
be given the current set of clauses to analyze. After analyzing the set of clauses it could suggest
one of the following possibilities:

Make a definition of the form pVp’' or pV (p’ Ap”) (also suggesting which p, p’ and p” to
use).

Prove a lemma (explicitly suggesting the lemma clause).
e Delete an existing clause.

Make the final call to a SAT solver.

Note that while the case with 15 pigeons is only one problem, it would generate thousands of
instances of training data. At each step in the proof above, there is the current set of clauses
(which changes after each command) and there is the command which follows. Likewise, the
case of 30 pigeons would lead to about 70,000 training instances: 15,219 for definitions, 7,809
for lemmas and 51,063 for deleting clauses. One slight issue is that there is only one positive
case which corresponds to making the final call to a SAT solver, as this is only done once.
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