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1 Introduction

This abstract describes a contribution accepted for CADE 2025 [2], which does not use any
statistical-based learning. Such extensions are described in Section 4, as future work.

This work investigates the use of Satisfiability Modulo Theories (SMT) to solve functional
equations over the reals—a category of problems that frequently appears in International Math-
ematical Olympiad (IMO) and other similar competitions. These problems involve determining
all functions f : R → R that satisfy a given constraint, such as:

∀x, y. f(x+ y) = xf(y) + yf(x).

The only solution in this case is f = λx. 0 (constant 0), which can be seen by substituting
{x 7→ x, y 7→ 0} and {x 7→ 0, y 7→ 0}.

While the mathematical content is at a high-school level, such problems are difficult for
state-of-the-art SMT solvers due to the combination of uninterpreted functions and nonlinear
real arithmetic.
The paper tackles two main challenges:

1. Function synthesis: Finding all functions f that solve the constraint within a predefined
template.

2. Completeness verification: Proving that no other functions outside the template sat-
isfy the given constraints.

2 Main Contributions

1. Template-Based Solution Search with Quantifier Elimination

Our core technique involves fixing a template—typically a polynomial such as f(x) = ax2 +
bx+c—and solving for the parameters a, b, c, using real quantifier elimination (QE). We use the
Tarski [8] system for QE but also avail of special cases and use Symbolic algebra tool SymPy [6].
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2. Proving Completeness via SMT

Once a candidate solution Ψ is found, to prove that it captures all valid solutions, we attempt to
prove the implication Φ ⇒ Ψ, or equivalently, that Φ ∧ ¬Ψ is unsatisfiable. For the motivating
example, prove:

(∀x, y. f(x+ y) = xf(y) + yf(x)) ⇒ (∀x. f(x) = 0)

However, SMT solvers struggle with this step.1 To overcome this, the paper introduces:

• Lemma generation: Automatically proposing and proving auxiliary ground equalities
(e.g., f(0) = 0) that assist in solving the main goal.

• Quantifier instantiation techniques:

– Partial instantiations: Assigning small constants (e.g., 0 or 1) to some variables to
simplify formulas.

– Theory-guided substitutions: Solving symbolic equations to find helpful instantia-
tions, particularly when terms do not syntactically appear in the original formula.

3 Experimental Results

A benchmark suite of 422 functional equation problems (79 from Musil’s dataset [3, 7], 343
from AoPS scraping) is used. The techniques led to substantial gains. With lemma generation
and instantiation techniques, the number of solved problems more than doubled. The system
also successfully solved problems that previously required manual insight, demonstrating the
power of integrating reasoning, symbolic computation, and SMT.

4 Future Work

The current implementation does not rely on any machine learning. There are two main di-
rections where we plan to extend the work. Currently, candidate lemmas are generated a
exhaustively according to hand-designed rules. Instead, we plan to propose the candidate lem-
mas by ML. A second main direction is to attempt solving the problems with an LLM directly.
If this is successful, we will still not be sure that the answer is correct but in such case, we will
try to extract useful lemmas from the LLM’s answer.
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and functional equation solving over the reals: Challenges from the IMO, 2025. URL: https:
//arxiv.org/abs/2504.15645, arXiv:2504.15645.

1The evaluation uses a portfolio of various settings of cvc5 [1], z3 [4], and vampire [5].

2

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://arxiv.org/abs/2504.15645
https://arxiv.org/abs/2504.15645
http://arxiv.org/abs/2504.15645


SMT for IMO Brown et al.
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