
SMT and Functional Equation Solving

over the Reals: Challenges from the IMO∗

Chad E. Brown1, Karel Chvalovský1, Mikoláš Janota1, Mirek Oľsák2, and Stefan
Ratschan3

1 Czech Technical University in Prague, Prague, Czechia
2 University of Cambridge

3 Institute of Computer Science Academy of Sciences of the Czech Republic

1 Introduction

This abstract describes a contribution accepted for CADE 2025 [2], which does not use any
statistical-based learning. Such extensions are described in Section 4, as future work.

This work investigates the use of Satisfiability Modulo Theories (SMT) to solve functional
equations over the reals—a category of problems that frequently appears in International Math-
ematical Olympiad (IMO) and other similar competitions. These problems involve determining
all functions f : R → R that satisfy a given constraint, such as:

∀x, y. f(x+ y) = xf(y) + yf(x).

The only solution in this case is f = λx. 0 (constant 0), which can be seen by substituting
{x 7→ x, y 7→ 0} and {x 7→ 0, y 7→ 0}.

While the mathematical content is at a high-school level, such problems are difficult for
state-of-the-art SMT solvers due to the combination of uninterpreted functions and nonlinear
real arithmetic.
The paper tackles two main challenges:

1. Function synthesis: Finding all functions f that solve the constraint within a predefined
template.

2. Completeness verification: Proving that no other functions outside the template sat-
isfy the given constraints.

2 Main Contributions

1. Template-Based Solution Search with Quantifier Elimination

Our core technique involves fixing a template—typically a polynomial such as f(x) = ax2 +
bx+c—and solving for the parameters a, b, c, using real quantifier elimination (QE). We use the
Tarski [8] system for QE but also avail of special cases and use Symbolic algebra tool SymPy [6].

∗Supported by the Czech MEYS under the ERC CZ project no. LL1902 POSTMAN, by the European Union
under the project ROBOPROX (reg. no. CZ.02.01.01/00/22 008/0004590).

SMT for IMO Brown et al.

2. Proving Completeness via SMT

Once a candidate solution Ψ is found, to prove that it captures all valid solutions, we attempt to
prove the implication Φ ⇒ Ψ, or equivalently, that Φ ∧ ¬Ψ is unsatisfiable. For the motivating
example, prove:

(∀x, y. f(x+ y) = xf(y) + yf(x)) ⇒ (∀x. f(x) = 0)

However, SMT solvers struggle with this step.1 To overcome this, the paper introduces:

• Lemma generation: Automatically proposing and proving auxiliary ground equalities
(e.g., f(0) = 0) that assist in solving the main goal.

• Quantifier instantiation techniques:

– Partial instantiations: Assigning small constants (e.g., 0 or 1) to some variables to
simplify formulas.

– Theory-guided substitutions: Solving symbolic equations to find helpful instantia-
tions, particularly when terms do not syntactically appear in the original formula.

3 Experimental Results

A benchmark suite of 422 functional equation problems (79 from Musil’s dataset [3, 7], 343
from AoPS scraping) is used. The techniques led to substantial gains. With lemma generation
and instantiation techniques, the number of solved problems more than doubled. The system
also successfully solved problems that previously required manual insight, demonstrating the
power of integrating reasoning, symbolic computation, and SMT.

4 Future Work

The current implementation does not rely on any machine learning. There are two main di-
rections where we plan to extend the work. Currently, candidate lemmas are generated a
exhaustively according to hand-designed rules. Instead, we plan to propose the candidate lem-
mas by ML. A second main direction is to attempt solving the problems with an LLM directly.
If this is successful, we will still not be sure that the answer is correct but in such case, we will
try to extract useful lemmas from the LLM’s answer.

References

[1] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Math-
ias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A ver-
satile and industrial-strength SMT solver. In Tools and Algorithms for the Construction and
Analysis of Systems, TACAS, volume 13243 of LNCS, pages 415–442. Springer, 2022. doi:

10.1007/978-3-030-99524-9_24.

[2] Chad E. Brown, Karel Chvalovský, Mikoláš Janota, Mirek Oľsák, and Stefan Ratschan. SMT
and functional equation solving over the reals: Challenges from the IMO, 2025. URL: https:
//arxiv.org/abs/2504.15645, arXiv:2504.15645.

1The evaluation uses a portfolio of various settings of cvc5 [1], z3 [4], and vampire [5].

2

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://arxiv.org/abs/2504.15645
https://arxiv.org/abs/2504.15645
http://arxiv.org/abs/2504.15645

SMT for IMO Brown et al.

[3] Chad E. Brown, Mikoláš Janota, and Mirek Oľsák. Symbolic computation for all the fun. In
C. W. Brown, D. Kaufmann, C. Nalon, A. Steen, and M. Suda, editors, Joint Proceedings of the 9th
Workshop on Practical Aspects of Automated Reasoning (PAAR) and the 9th Satisfiability Checking
and Symbolic Computation Workshop (SC-Square), 2024 co-located with the 12th International Joint
Conference on Automated Reasoning (IJCAR 2024), volume 3717 of CEUR Workshop Proceedings,
pages 111–121. CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3717/paper6.pdf.

[4] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, volume 4963, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

[5] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha Shary-
gina and Helmut Veith, editors, Computer Aided Verification - 25th International Conference, CAV,
volume 8044 of LNCS, pages 1–35. Springer, 2013. doi:10.1007/978-3-642-39799-8_1.

[6] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. SymPy: sym-
bolic computing in Python. PeerJ Computer Science, 3:e103, 2017. URL: https://www.sympy.org.

[7] Vı́t Musil. Funkcionálńı rovnice, 2024. Online library of the Matematický korespondenčńı
seminář PraSe (PRAžský SEminář), Downloaded 8 March 2024. URL: https://prase.cz/library/
FunkcionalniRovniceVM/FunkcionalniRovniceVM.pdf.

[8] Fernando Vale-Enriquez and Christopher W. Brown. Polynomial constraints and unsat cores in
Tarski. In James H. Davenport, Manuel Kauers, George Labahn, and Josef Urban, editors, Math-
ematical Software - ICMS - 6th International Conference, volume 10931 of LNCS, pages 466–474.
Springer, 2018. Code obtained from https://github.com/chriswestbrown/tarski. URL: https:
//www.usna.edu/Users/cs/wcbrown/tarski/index.html, doi:10.1007/978-3-319-96418-8_55.

3

https://ceur-ws.org/Vol-3717/paper6.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-39799-8_1
https://www.sympy.org
https://prase.cz/library/FunkcionalniRovniceVM/FunkcionalniRovniceVM.pdf
https://prase.cz/library/FunkcionalniRovniceVM/FunkcionalniRovniceVM.pdf
https://github.com/chriswestbrown/tarski
https://www.usna.edu/Users/cs/wcbrown/tarski/index.html
https://www.usna.edu/Users/cs/wcbrown/tarski/index.html
https://doi.org/10.1007/978-3-319-96418-8_55

	Introduction
	Main Contributions
	Experimental Results
	Future Work

