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Deepire II is a new neural architecture implemented in the saturation-based theorem prover
Vampire [2] for clause selection guidance [3]. It consists of a Graph Neural Network (GNN) for a
name-invariant processing of the input Clause Normal Form (CNF), followed by two Recursive
Neural Networks (RvNN): one running along clause derivation history (as in Deepire I [12, 13])
and one along the clause term structure (as in ENIGMA-NG [5]). Trained on the standard
TPTP benchmark for first-order proving, in a setup inspired by the Reinforcement Learning
(RL) paradigm, Deepire II proves 20% more theorems than the baseline strategy.

The RL-inspired learning operator comes from the previous AITP [14]. Also the current
architecture was already sketched there, however, an efficient implementation took longer to
accomplish and the results reported here are from a submission to CADE 2025 [15].

One-off GNN Invocation. Graph Neural Networks (GNNs) have been established as good
basis for name invariant neural formula representations [10, 7, 1]. However, GNNs are relatively
expensive to evaluate and intuitively work best when given a large formula (i.e., many clauses)
to evaluate at once, so that individual constituents (sub-formulas, terms, symbols) provide
sufficient context for one another [4, 6]. This becomes tricky when evaluating clauses for clause
selection, as the group of newly derived clauses, which need to be evaluated after each activation,
varies in size and is typically relatively small.

While still taking advantage of GNNs’ representational power, Deepire II avoids these com-
plications by running a GNN only once, at the beginning of the saturation process on the
input problem’s CNF, and have the GNN prepare name-invariant embeddings of the signature
symbols and the input clauses, to be further utilized in subsequent processing.

Generalizing Age and Weight with RvNNs. The idea is to use these embeddings to seed
computations of two independent Recursive Neural Networks (RvNN) [9].

As mentioned, one RvNN starts from the input clause embeddings and unrolls along the
clause derivation tree, the other starts from the symbol embeddings and unrolls along the clause
parse tree. In fact, it is advantageous to treat each of these trees as a directed acyclic graph
(DAG), share the common subgraphs and cache the results for the already computed subgraphs.

One can think of these two RvNNs as allowing the training process to generalize and improve
upon the two most commonly used standard Clause Evaluation Functions (CEFs), clause age
and clause weight. The former is essentially the depth of the derivation tree, while the latter
equals the number of nodes in the parse tree. As such, each could in principle be rediscovered
by the new architecture through learning, which intuitively feels like a good design.

Completing the Neural CEF. To complete the tower of NN modules and obtain a final
score for a clause, Deepire II concatenates the embeddings from the two RvNNs with a vector of
12 easy-to-compute simple clause features. These features include the standard age and weight,
the number of literals based on their polarity, the number of variable occurrences or the number
of AVATAR [17] splits a clause depends on. The concatenated vector is then fed to a simple
fully-connected NN (an MLP) with one hidden layer and a single clause score output.
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Figure 1: Clause evaluation neural architecture. Information flows from left to right.

The whole architecture is shown in Figure 1. In the experiments, the number of GNN
message-passing rounds was set to k = 8, embeddings had size n = 32 (both in the GNN
and in the RvNNs), and non-linearities were computed using ReLU after a temporary linear
expansion to size m = 256. Please consult the CADE submission for additional details [15]. The
architecture was implemented in PyTorch 2.5 library [11] and we used the TorchScript bridge
for interfacing the neural model trained in Python from C++, in which Vampire is written.

Experimental Results. We used Vampire’s default strategy under an instruction limit of
30 000Mi (∼ 10 s) per proof attempt both as the source of initial training traces, as well as the
basis for the neurally guided extension (so that the extra time spent ‘thinking‘ has to be made
up by better decisions). We took all the 19 477 first-order problems from TPTP library [16]
v9.0.0 and randomly split them into 15 000 training problems and the rest for testing.

The default strategy solved approximately 46.3% of the training problems, while Deepire II,
after 24 improvement iterations (i.e., iteratively training from traces obtained by the previous
version of the guided prover and evaluating to collect more traces), solved 56.2% of the training
and 54.5% of the testing problems. The best test-performance gain (of the advertised 20% over
the baseline) was obtained by implementing two additional tricks: We used several repeated
randomized runs of the prover to collect more training traces in each iteration and we assigned
more weight in the training to traces from problems solved only in recent loop iterations, while
the weight of problems solved repeatedly in past successive loops was gradually decreased.

Solving Hard Problems. To check whether our neural guidance can also help Vampire solve
hard problems, we ran one more training session, but this time with runs limited at 100 000Mi
(∼ 40 s) on the whole first-order TPTP.1 During the 30 improvement loops for which this
experiment ran, Deepire II solved 130 TPTP problems of rating 1.0.

A TPTP problem having rating 1.0 means that it has not been solved during the last rating
evaluation [16]. While there are many rating 1.0 problems that had been solved at some point
in the past, out of our 130 problems, we found 49 that were actually never solved even once!
This is a remarkable occurrence in the context of a single strategy improvement.

Outlook. Our new architecture involves many design decisions and hyperparameters that can
be questioned and tuned. While we value the unprecedented success on the diverse—and usually
hard to learn for—TPTP benchmark, evaluating Deepire II on some of the more common sets
problems in this context, such as Mizar40 [8], is the obvious next step.

1Note that not using a train/test split is fine here, because none of the problems we now report were solved
by the seeding default strategy and so they had to be attained solely thanks to generalization.
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