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Abstract

We propose, and plan to present early results on, an approach to using LLMs for the
generation of useful abstractions in the context of equational reasoning. Specifically, given
a partial proof search, we consider the task of providing definitions to the Twee solver
with the aim of speeding up convergence. We outline a pipeline for generating supervised
fine-tuning data (via synthetic conjectures and symbolic abstraction heuristics) and for
continuously improving the LLM’s suggestions through iterative refinement with feedback
from Twee (via Reinforcement Learning).

Like other automated theorem provers for equational logic, T'wee uses a DISCOUNT loop
to implement unfailing Knuth-Bendix completion. In addition, it supports goal direction by
adding axioms containing constants which define subterms of the goal. It is shown that this
simple form of goal direction can lead to significant speedups for certain problems (a similar
“goal definition” feature exists as an option for E). Generalizing slightly, we wish to consider
the setting in which we allow ourselves to introduce axioms that contain (possibly functional)
constants defining arbitrary, syntactically valid terms. We call such axioms abstractions.

Given the successes of simple, goal-derived abstractions, a natural question to ask is: for a
given axiom set, goal and partial proof search in Twee, which more general abstractions will
augment search in a way that leads to faster convergence? The idea of introducing definitions
or intermediate lemmas to ease proof search has a long history in automated reasoning. Veroff’s
hints technique [11], for instance, showed that providing previously discovered lemmas as hints
can dramatically aid provers in tackling hard problems in loop theory.

We propose to approach the automation of this task via the iterative finetuning of a LLM, in
which training signals are shaped by feedback from Twee. As a baseline, both for the purposes
of comparison and pretraining, we will survey and adapt various previous symbolic approaches
suitable to this task [12, 14, 13, 7, 1]. Various learning-based approaches have also been proposed
[6, 3, 5]. Similar in spirit to our approach is the lemma suggestion of [5]. In their experiments on
the Abelian Inner Mapping (AIM) conjectures in loop theory [4], a reinforcement learning agent
(using a technique called 3SIL) learned to propose rewrite steps. It was then used to rewrite
conjectures to derive useful lemmas which, when augmenting Prover9, enabled the proof of
about 8% more theorems than Prover9 alone. This demonstrates the promise of learned lemma
generation in equational domains.! However, to our knowledge, no prior work has directly
trained an LLM to generate definition-style abstractions to aid an equational prover?. We aim
to provide preliminary explorations in this area, with the broader intention of evaluating the
capabilities of LLMs in extracting relevant insights from proof logs. Our proposed pipeline
consists of the following steps:

1. SFT: Perform Supervised Fine-Tuning on a base LLM to generate a syntactically valid ab-
straction given a prompt consisting of an axiom set, conjecture, and partial goal-directed

1We note that many of these previously studied techniques focus on lemma discovery (often in stronger
logics), a task which can be specialized to our specific task of abstraction introduction in equational theories.
2Though, techniques from program synthesis and code refactoring may be relevant here — for example [2].
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Twee run. To construct such an instruction-tuning dataset, we first build an input in-
stance as follows: synthetically generate syntactically valid axioms; select some provable
conjectures by running Prover9 in production mode on these axioms; perform a partial
run of Twee on these axioms and conjectures. This input is then paired with desired out-
puts (i.e. abstractions) which are collected from the twee run using symbolic approaches,
such as frequent subterm mining.

2. RL: Fixing some axiom set and dataset of conjectures, we enter an iterative improvement
loop. In each iteration, we do the following:

For each conjecture and corresponding partial twee run, prompt the LLM to sample
multiple abstractions. For each sample, rerun Twee, now augmented with the abstraction.
For the runs that converge, we derive some reward (e.g. based on the length of the derived
proof) which is used to perform GRPO on the LLM [g].

We iterate until performance saturates.

In Step 2, we rely on the presence of an existing dataset of conjectures in some fixed equational
theory. This leads to highly specialized abstraction generators, which may be useful in the
context of hard open problem, such as those of Verroff’s AIM project [4]. Alternatively, we
may also wish to produce a more general purpose tool suitable for proof guidance in arbitrary
equational theories. In this case, we foresee the possible use of a curriculum learning approach,
in which the LLM is dually trained to generate axiom sets which provide dense training signal
for the task of abstraction generation. We hope to test this more general approach on TPTP’s
UEQ problems set [10], and possibly enter the CASC competition [9].

We plan to report on our preliminary implementation and results at the workshop, and we
welcome feedback and suggestions from the community.
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