
Hypothesis Space Processing for Efficient Rule

Learning Through Inductive Logic Programming

David M. Cerna∗

Dynatrace Research, Linz, Austria

May 13, 2025

Inductive Logic programming (ILP) combines knowledge representation and
machine learning [7, 3]. The goal is to search a hypothesis space, consisting of
logic programs, to find a hypothesis that generalizes the given training exam-
ples and background knowledge. Early ILP approaches such as foil iteratively
specialize rules till only positive examples are accepted and repeat this process
until all positive examples are accepted. This process was refined in systems
like Aleph by restricting the search space of specializations to hypotheses that
θ-subsume the so-called bottom clause, i.e, the most specific clause which accepts
a given positive example.

Modern ILP often follows the meta-learning approach, i.e., perform search
through an encoding of the hypothesis space. In particular, Popper [4] encodes
the generation of logic programs modulo the background knowledge as an ASP
program (generate phase). As Popper tests the hypothesis produced by the gen-
erate phase, additional constraints are added guiding the search at subsequent
steps. This leads to a significant decrease in the number of tested hypotheses
while maintaining optimality guarantees. These constraints are based on propo-
sitional subsumption and are thus computationally feasible to check. Popper’s
approach to ILP has led to significant advancements in the tasks such systems
can handle. For example learning with negative invention [1], Higher-order [8],
very large programs [5], and competative performance on ARC [6].

In this abstract, we focus on alternative constraints based on the semantics
of the background knowledge and symmetry breaking, which can improve
performance in all of the above areas. For example, in [2] we introduce the
notion of reducible literal, i.e., given a rule r containing l, the following holds:
B |= r ↔ r \ {l} where B is the background knowledge. We use this concept to
introduce additional constraints while learning. In some cases, we can constrain
the hypothesis space prior to learning, for example, if a predicate in the back-
ground knowledge is satisfied by a finite number of instantiations. This limits
the number of times it can occur in a rule. For example, consider the following
where r1 ⪯θ r2:

∗This extended abstract concerns joint work with Andrew Cropper.

1



B = {edge(a,b), edge(b,c), edge(c,a) }
r1 = h ← edge(A,B), edge(B,C), edge(C,D), edge(D,E)
r2 = h ← edge(A,B), edge(B,C), edge(C,A)
θ = {D 7→ A,E 7→ B}

We refer to this property as recall redundant, similar properties are definable
for literal combinations that make a rule unsat, literal combinations that are
always true, and implication relations between literals. A final approach to
constraining the hypothesis space is to remove rule variants. This is achieved
by ordering the literals by their argument tuples and normalizing with respect
to certain properties.

r1 : h(A,B)← p(A,E), p(B,C), p(C,D).

r2 : h(A,B)← p(A,C), p(B,E), p(C,D).

Observe r1σ2 = r2 where σ2 = {E 7→ C,C 7→ E}{E 7→ D}. In the above
case, we order the variables and ensure that variables are witnessed by smaller
variables (with respect to a variable order). This normalization is sound (does
not remove all variants), but incomplete. We will cover these approaches in
more detail during the talk.

References

[1] David M. Cerna and Andrew Cropper. Generalisation through negation and
predicate invention. AAAI, 38(9):10467–10475, 2024.

[2] Andrew Cropper and David M. Cerna. Efficient rule induction by ignoring
pointless rules, 2025.

[3] Andrew Cropper and Sebastijan Dumancic. Inductive logic programming at
30: A new introduction. J. Artif. Intell. Res., 74:765–850, 2022.

[4] Andrew Cropper and Rolf Morel. Learning programs by learning from fail-
ures. Mach. Learn., 110(4):801–856, 2021.

[5] Céline Hocquette, Andreas Niskanen, Rolf Morel, Matti Järvisalo, and An-
drew Cropper. Learning big logical rules by joining small rules. In IJCAI,
pages 3430–3438, 2024.

[6] Céline Hocquette and Andrew Cropper. Relational decomposition for pro-
gram synthesis, 2025.

[7] Stephen Muggleton. Inductive logic programming. New Generation Com-
puting, 8(4):295–318, 1991.

[8] Stanislaw J. Purgal, David M. Cerna, and Cezary Kaliszyk. Learning higher-
order logic programs from failures. In Luc De Raedt, editor, IJCAI, pages
2726–2733, 2022.

2


