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1 Quantified Formulas and SMT Solvers

In this work we considerably improve the real-time performance of state-of-the-art satisfiability
modulo theories (SMT) solving on first-order quantified problems by efficient machine learning
guidance of quantifier selection. Quantifiers represent a significant challenge for SMT and are
technically a source of undecidability. In our approach, we train an efficient machine learning
model that informs the solver which quantifiers should be instantiated and which not. Each
quantifier may be instantiated multiple times and the set of the currently active quantifiers
changes as the solving progresses. Therefore, we invoke the machine learning (ML) predictor
many times, during the whole run of the solver. To make this efficient, we use fast ML models
based on gradient boosted decision trees. We integrate our approach into the state-of-the-art
cveh SMT solver [2] and show a considerable increase of the system’s holdout-set performance
after training it on large sets of first-order problems. The method is tested in several ways,
using both single-strategy and portfolio approaches. The evaluation is done on two large formal
verification corpora: first-order problems created from the Mizar Mathematical Library, and
first-order problems created from the HOL4 standard library.

Our methods improve upon a related method of offline premise selection [1, 8], where initial
quantified assumptions are filtered only once before launching the solver. Such filtering can
result in an irrecoverable mistake (a deletion abstraction [14] resulting in a too weak theory)
when a necessary assumption is deleted, whereas the method presented here ensures that every
quantified formula will be considered for instantiations with a non-zero probability. This yields a
more complex, probabilistically guided framework implementing deletion and instantiation ab-
stractions in the framework proposed in [14]. As we employ a highly effective version of gradient
boosting decision trees with efficiently computable symbol-based features, our implementation
produces only a minimal overhead over the standard cveb run.

Formulas with with quantifiers represent a significant challenge for SMT. In general, SMT
solvers use instantiations—unless they deal with decidable quantified theories [5, 3, 15]. In-
stantiations are done with the goal of achieving a contradiction. This style of reasoning can
be seen as a direct application of the Herbrand’s theorem. For example, for (Vz : R.z > 0)
instantiating x with the value 0 yields 0 > 0, which immediately gives a contradiction (in R).

The solving process alternates between a ground solver and an instantiation module, where
the ground solver perceives quantifiers as opaque propositions. After identifying a model for the
ground part, control shifts to the instantiation module. This module generates new instances
of the quantified sub-formulas that are currently meant to hold. A new instance is added to
the ground part of the formula, thus making it stronger. The process stops if the ground part
becomes unsatisfiable, if ever (model-based quantifier instantiation can also lead to satisfiable
answers [6]).
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2 Machine learning for instantiation guidance

The instantiation methods supported by cveb are implemented through various instantiation
modules that share a common interface. An instantiation module is invoked via its check method
to refine information about quantified formulas by introducing appropriate formula instances.
FEach module is provided with information about currently asserted quantified formulas, and it
selects formulas and generates their instances in accordance with the implemented instantiation
method. Subsequently, control is returned to the ground solver.

Effective quantifier and instance selection can significantly enhance performance, and dif-
ferent instantiation methods offer grounds for various possible applications of machine learning
methods at a method-specific level [11, 12]. However, we propose a generic method for quantifier
selection by limiting the formulas visible to the modules. As all instantiation modules iterate
over available quantified formulas and process them one by one, we can seamlessly integrate a
quantifier selector into any module and simply skip the processing of undesirable quantifiers. To
predict the quality of quantifiers, we represent quantified formulas by feature vectors similar to
ENIGMA features [10, 9], and we utilize an efficient implementation of decision tree ensembles
(LightGBM [13]) that enables easy and fast integration with cveb. Decision tree models can be
trained to classify quantified formulas as positive or negative based on provided training exam-
ples. The trained model can be employed within an instantiation module to skip the processing
of negative quantifiers.

The two most prominent modules for quantifier selection in cvch are enumerative instanti-
ation and e-matching. We implement our machine learning guidance for them, as well as for
the modules relying on conflict-based quantifier instantiation and finite model finding.

Next, we conduct a straightforward and reproducible experiment to construct an ML-
enhanced portfolio of strategies and compare its performance with state-of-the-art cveb portfo-
lio. We use two different benchmark datasets for our experiments: Mizar’s MPTP [16, 17, 1§]
and HOL4’s GRUNGE [4]. Both datasets originate from translations of large mathematical
libraries into first-order logic, specifically into the UF theory in the context of SMTs. Thanks
to the versatility of our approach, we could integrate it with various instantiation strategies,
thereby enhancing multiple solver configurations and achieving a notable 22.46% improve-
ment over the baseline state-of-the-art portfolio on Mizar and 12.86% improvement
on GRUNGE.

Our methods also exhibit remarkable qualities of cross-strategy model transfer, where a
model trained on samples from one strategy improves the performance of other strategies. This
is not always guaranteed in practice. For instance, in the context of ATPs, where machine
learning is used to guide given clause selection [10, 9], such transfer typically does not occur [8].
A key reason for this difference lies in the syntactic forms of formulas encountered during proof
search. In ATPs, different term orderings lead to distinct normal forms of first-order terms,
meaning that strategies operate on syntactically different formulas, making model transfer
challenging. However, in the context of quantifier selection for SMTs, all strategies process
syntactically equivalent formula representations, which enables effective knowledge transfer.

The above allowed us to improve the state-of-the-art performance of cveb on Mizar by more
than 20% in both the single strategy and portfolio scenarios. Our best machine-learned strategy,
alone, outperforms the state-of-the-art cvch’s portfolio from the latest CASC competition by
more than 10%. Our best strategy solves 1,810 problems from the Mizar benchmark in 30
seconds. This number can be informatively compared with experiments on the same dataset
from the literature [7], where the state-of-the-art ATP prover E with advanced machine learning
methods, solves only 1,632 of the holdout problems in 30 seconds.
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