
On Lemma Conjecturing using
Neural, Symbolic and
Neuro-symbolic approaches
Sólrún Halla Einarsdóttir, Yousef Alhessi,
Emily First, Moa Johansson

AITP 2024

Lemma
suggestions

Feedback
Conjecturing

System

Functions
Datatypes
Theorems

QuickSpec
rev [] = []
rev (x : xs) = (rev xs) ++ (x :
[])

[] ++ xs = xs
(x : xs) ++ ys = x : (xs ++ ys)

1. rev [] = []
2. x ++ [] = x
3. [] ++ x = x
4. rev (rev x) = x
5. rev (x : []) = x : []
6. (x ++ y) ++ z =
 x ++ (y ++ z)
7. x : (y ++ z) = (x : y) ++ z
8. rev x ++ rev y =
 rev (y ++ x)
9. (xs ++ (y : (z : [])) =
 rev (z : (y : (rev xs)))

QuickSpec
• Leverages property-based testing (QuickCheck) and equational

reasoning (Twee) to generate equational properties.

• Has been used to generate lemmas to automate inductive proofs.
(most recently with Vampire, see IJCAR ‘24 paper)

• Hipster: Isabelle tool for automated inductive proof using
QuickSpec.

• Downsides: Becomes less efficient as the number of functions in
scope grows.

RoughSpec
• Searches for conjectures that match a

given template, e.g.

• ?F(?F(x,y),z) = ?F(x,?F(y,z))

• Given ++,rev and this template we’d
find

 (x ++ y) ++ z = x ++ (y ++ z)

• A small number of templates can provide
many lemmas

• How can we automatically come up with
good templates to use for a new theory?

Symbolic vs. Neural conjecturing
Neural conjecturing:

Strengths
• Unrestricted in shape and size of

conjectures.
• Can use information from

names.
Weaknesses
• Prone to repetition.
• Generate false conjectures.
• Needs computational resources.

Symbolic conjecturing:

Strengths
● (More-or-less) true conjectures.
● Avoid repetition.
● Runs locally on a laptop.

Weaknesses
● Restricted in size and shape.
● Can’t use name information.

Neuro-Symbolic Conjecturing: using
RoughSpec!
• What if we get an LLM to generate templates for conjectures, which

can then be filled in by RoughSpec?
• LLMs are good at capturing patterns/intuition.
• Compare to Neural-only approach: train a model to generate

conjectures.
• Compare to symbolic-only approach:

• QuickSpec
• RoughSpec using simple heuristics/statistical analysis to choose

templates.

Ongoing experiments:
Neural Only Conjecturing
Fine-tuning Facebook OPT 1.3B parameter model
Data: Isabelle-HOL Library (around 30k examples)

(Near) Future: Bigger model, more data (AFP)

Input:
Symbols,

Definitions

Target:
Lemma

Statement

Evaluation
• Syntax-checking
• Counterexample-checking

(Near) Future:
• Provable?
• Trivial?
• Coverage?
• Usefulness in proof automation?

Generated conjectures 3062

Pass syntax check 375

Pass counterexample check 163

"x \<and> y => x \<and> y" "sq x * sq y = sq (x + y)"

Challenges/ Future Work
• Workflow: How do we interact with the LLM?

• Sample once or many times, interleave/iterate back and forth?
• Predict lemmas independently or many at a time?
• Conditioned prediction?
• What context to provide?

• How to evaluate lemma quality/interestingness?
• Training data leakage?
• Could this be extended to support other languages (Lean, Coq)?

