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Lemmas to Aid Automated Proof Search

Explore the benefit of identifying/using lemmas to aid proof search
Lemmas can make the proof shorter
Lemmas can make selecting the next inference harder
Ideally, we would like to identify just a few relevant lemmas
Similar to premise selection, but we assume no given premise set

Rawson, Wernhard, Zombori, Bibel. Lemmas: Generation, Selection, Application. To appear at TABLEAUX2023
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Dataset

Restrict attention to Condensed Detachment (CD) problems

Detachment axiom P(i(x, y)) ∧ P(x) → P(y)Proper axioms units e.g. P(i(i(i(x, y), z), i(i(z, x), i(u, x))))Goal negative ground unit e.g. ¬P(i(a, i(b, a)))

Horn, first-order variables, binary function symbol, cyclic predicate dependencyGeneralization to arbitrary Horn problems is possibleProofs have a simple regular tree structure (D-terms)D-terms are convenient for feature extraction and for structure enumeration
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Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

1. Generate
2. Filter
3. Apply
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Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

Lemma Generation
Focus on the structure of proofsEnumerate proof structuresAvoid duplicates due to differentderivationsLimit enumeration via some measure onthe structureDifferent measures result in very differentlemma sets
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Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

Lemma Selection
Use machine learningModel input: Problem (Conjecture +Axioms), LemmaModel output: Utility score u ∈ [0, 1]Manual and automated (GNN) inputfeaturesUtility based on inference step reduction
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Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

Lemma Application
Can be added as axioms
• Suitable for any prover
Can have a special treatment
• Lemmas as macros• Replace inner lemmasearch/enumeration
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Iterative Improvement

Start from a set of problems
Search from proofs
Learn from proof attempts
Fit a model
Start search again, using the learned model
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Learning Requirements, Considered Provers

Lemma generation requires proof structure enumeration (SGCD)
We require provers that emit proofs as D-terms (SGCD, Prover9, CMProver, CCS)
Any prover can be used for evaluation

SGCD Prover9 CMProver leanCoP CCS-Vanilla Vampire E

Goal-driven •/− − • • • ◦ ◦CM-CT ◦ − • • − − −Proof Structure Enumeration • − • ◦ • − −Resolution / Superposition − • − − − • •
Output proof as D-term • • • − • − −
Input lemmas that replace search • − − − • − −
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Learning from Successful Proof Attempts

Utility measure calculation requires a prover that can produce a proof tree structure
Given a proof, any substructure can be considered as a lemma that we can learn from
Lots of training signal from a single proof, if the proof is long
Different proofs of the same problem can be used
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Learning from Failed Proof Attempts

Any proof attempt constructs a sequence of incomplete proof structures
Most of these have complete substructures
These are proof terms of formulas proven as a byproduct of proof search
We can use any such substructures as a proof to learn from
Similar to Hindsight Experience Replay [Andrychowicz et al., 2017]
• Pretend that we wanted to prove what we accidentally proved
Provides huge amounts of training data from failed proofs
• 1̃00K samples with 10 sec timeout
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Model Fitting: Linear Model vs Graph Neural Network

Validation Loss
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Model Fitting: Linear Model vs Graph Neural Network

Ability to predict correct order
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Problemwise learning from failed attempts

Prover: SGCD (provecd_sgcd_s1.pl)Time limit: 10 secTotal problems: 312
Train a separate model for each problem

Base prover 176With lemmas 11Timeout 4Failure 121
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Learning both from failed and successful proof attempts

Prover: SGCD (provecd_sgcd_s1.pl)Time limit: 10 secTotal problems: 411
Train a single model for all problems.

Learn from Iteration Total0 1 2 3 4
success 199 203 206 216 205 222 (+23)failure 199 211 219 209 205 229 (+30)both 199 212 207 223 200 230 (+31)
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Learning both from failed and successful proof attempts

Prover: portfolio of diverse SGCD strategies (f_sgcd_tsize)
Time limit: 10 sec
Total problems: 411

Learn from Iteration Total
0 1 2 3 4both 236 257 246 249 244 263 (+27)
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Conclusion

Lemmas are helpful to find a proof
Generate, filter, apply lemmas
A lot of signal can be extracted from failed proof attempts that is useful for learning
Lemma generation brings a bit of resolution into non-resolution based provers
Blurs the distinction between forward and backward reasoning
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