
Learning to Identify Useful Lemmas from Failure

Michael Rawson 1 Christoph Wernhard 2 Zsolt Zombori 3,4
1TU Wien 2University of Potsdam 3Alfréd Rényi Institute of Mathematics 4Eötvös Loránd University

AITP2023
Aussois, France, September 3-8, 2023

1



Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –Project-ID 457292495, by the North-German Supercomputing Alliance (HLRN), by the ERC grant CoG ARTIST101002685, by the Hungarian National Excellence Grant 2018-1.2.1-NKP-00008, the Hungarian ArtificialIntelligence National Laboratory Program (RRF-2.3.1-21-2022-00004), the ELTE TKP 2021-NKTA-62 fundingscheme and the COST action CA20111.

1



1. Learning to Identify Useful Lemmas
2. Learning from Successful as well as Failed Proof Attempts
3. Experiments
4. Learning Subtree/Unit Lemmas
5. Conclusion

2

Learning to Identify Useful Lemmas from Failure



1. Learning to Identify Useful Lemmas
2. Learning from Successful as well as Failed Proof Attempts
3. Experiments
4. Learning Subtree/Unit Lemmas
5. Conclusion

3

Learning to Identify Useful Lemmas from Failure



Lemmas to Aid Automated Proof Search

Explore the benefit of identifying/using lemmas to aid proof search
Lemmas can make the proof shorter
Lemmas can make selecting the next inference harder
Ideally, we would like to identify just a few relevant lemmas
Similar to premise selection, but we assume no given premise set

Rawson, Wernhard, Zombori, Bibel. Lemmas: Generation, Selection, Application. To appear at TABLEAUX2023

4



Dataset

Restrict attention to Condensed Detachment (CD) problems

Detachment axiom P(i(x, y)) ∧ P(x) → P(y)Proper axioms units e.g. P(i(i(i(x, y), z), i(i(z, x), i(u, x))))Goal negative ground unit e.g. ¬P(i(a, i(b, a)))

Horn, first-order variables, binary function symbol, cyclic predicate dependencyGeneralization to arbitrary Horn problems is possibleProofs have a simple regular tree structure (D-terms)D-terms are convenient for feature extraction and for structure enumeration

5



Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

1. Generate
2. Filter
3. Apply

6



Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

Lemma Generation
Focus on the structure of proofsEnumerate proof structuresAvoid duplicates due to differentderivationsLimit enumeration via some measure onthe structureDifferent measures result in very differentlemma sets

7



Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

Lemma Selection
Use machine learningModel input: Problem (Conjecture +Axioms), LemmaModel output: Utility score u ∈ [0, 1]Manual and automated (GNN) inputfeaturesUtility based on inference step reduction

8



Method overview

Problem

LemmaGenerator Large set
of lemmas

UtilityModel Set of selected
lemmas

EvaluatedProver Proof

Training data

Problem1
BaseProver Proof1

Problemn
BaseProver Proofn

⋮

Lemma Application
Can be added as axioms
• Suitable for any prover
Can have a special treatment
• Lemmas as macros• Replace inner lemmasearch/enumeration

9



Iterative Improvement

Start from a set of problems
Search from proofs
Learn from proof attempts
Fit a model
Start search again, using the learned model

10



Learning Requirements, Considered Provers

Lemma generation requires proof structure enumeration (SGCD)
We require provers that emit proofs as D-terms (SGCD, Prover9, CMProver, CCS)
Any prover can be used for evaluation

SGCD Prover9 CMProver leanCoP CCS-Vanilla Vampire E

Goal-driven •/− − • • • ◦ ◦CM-CT ◦ − • • − − −Proof Structure Enumeration • − • ◦ • − −Resolution / Superposition − • − − − • •
Output proof as D-term • • • − • − −
Input lemmas that replace search • − − − • − −

11



1. Learning to Identify Useful Lemmas
2. Learning from Successful as well as Failed Proof Attempts
3. Experiments
4. Learning Subtree/Unit Lemmas
5. Conclusion

12

Learning to Identify Useful Lemmas from Failure



Learning from Successful Proof Attempts

Utility measure calculation requires a prover that can produce a proof tree structure
Given a proof, any substructure can be considered as a lemma that we can learn from
Lots of training signal from a single proof, if the proof is long
Different proofs of the same problem can be used

13



Learning from Failed Proof Attempts

Any proof attempt constructs a sequence of incomplete proof structures
Most of these have complete substructures
These are proof terms of formulas proven as a byproduct of proof search
We can use any such substructures as a proof to learn from
Similar to Hindsight Experience Replay [Andrychowicz et al., 2017]
• Pretend that we wanted to prove what we accidentally proved
Provides huge amounts of training data from failed proofs
• 1̃00K samples with 10 sec timeout

14



1. Learning to Identify Useful Lemmas
2. Learning from Successful as well as Failed Proof Attempts
3. Experiments
4. Learning Subtree/Unit Lemmas
5. Conclusion

15

Learning to Identify Useful Lemmas from Failure



Model Fitting: Linear Model vs Graph Neural Network

Validation Loss

16



Model Fitting: Linear Model vs Graph Neural Network

Ability to predict correct order

17



Problemwise learning from failed attempts

Prover: SGCD (provecd_sgcd_s1.pl)Time limit: 10 secTotal problems: 312
Train a separate model for each problem

Base prover 176With lemmas 11Timeout 4Failure 121

18



Learning both from failed and successful proof attempts

Prover: SGCD (provecd_sgcd_s1.pl)Time limit: 10 secTotal problems: 411
Train a single model for all problems.

Learn from Iteration Total0 1 2 3 4
success 199 203 206 216 205 222 (+23)failure 199 211 219 209 205 229 (+30)both 199 212 207 223 200 230 (+31)

19



Learning both from failed and successful proof attempts

Prover: portfolio of diverse SGCD strategies (f_sgcd_tsize)
Time limit: 10 sec
Total problems: 411

Learn from Iteration Total
0 1 2 3 4both 236 257 246 249 244 263 (+27)

20



1. Learning to Identify Useful Lemmas
2. Learning from Successful as well as Failed Proof Attempts
3. Experiments
4. Learning Subtree/Unit Lemmas
5. Conclusion

21

Learning to Identify Useful Lemmas from Failure



Conclusion

Lemmas are helpful to find a proof
Generate, filter, apply lemmas
A lot of signal can be extracted from failed proof attempts that is useful for learning
Lemma generation brings a bit of resolution into non-resolution based provers
Blurs the distinction between forward and backward reasoning

22



References I

[Andrychowicz et al., 2017] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,Pieter Abbeel, O., and Zaremba, W. (2017).
Hindsight experience replay.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

[Lohrey et al., 2013] Lohrey, M., Maneth, S., and Mennicke, R. (2013).
XML tree structure compression using RePair.
Inf. Syst., 38(8):1150–1167.
System available from https://github.com/dc0d32/TreeRePair, accessed Jun 30, 2022.

[Łukasiewicz, 1948] Łukasiewicz, J. (1948).
The shortest axiom of the implicational calculus of propositions.
In Proc. of the Royal Irish Academy, volume 52, Sect. A, No. 3, pages 25–33.
Republished in [Łukasiewicz, 1970], p. 295–305.

[Łukasiewicz, 1970] Łukasiewicz, J. (1970).
Selected Works.
North Holland.
Edited by L. Borkowski.

23

https://github.com/dc0d32/TreeRePair


References II

[Meredith and Prior, 1963] Meredith, C. A. and Prior, A. N. (1963).
Notes on the axiomatics of the propositional calculus.
Notre Dame J. of Formal Logic, 4(3):171–187.

[Rawson et al., 2023] Rawson, M., Wernhard, C., Zombori, Z., and Bibel, W. (2023).
Lemmas: Generation, selection, application.
CoRR, abs/2303.05854.
Submitted, preprint: https://arxiv.org/abs/2303.05854.

[Ulrich, 2001] Ulrich, D. (2001).
A legacy recalled and a tradition continued.
J. Autom. Reasoning, 27(2):97–122.

[Wernhard, 2022a] Wernhard, C. (2022a).
CD Tools – Condensed detachment and structure generating theorem proving (system description).
https://arxiv.org/abs/2207.08453.

[Wernhard, 2022b] Wernhard, C. (2022b).
Generating compressed combinatory proof structures – an approach to automated first-order theorem proving.
In Konev, B., Schon, C., and Steen, A., editors, PAAR 2022, volume 3201 of CEURWorkshop Proc. CEUR-WS.org.
Preprint: https://arxiv.org/abs/2209.12592.

24

https://arxiv.org/abs/2303.05854
https://arxiv.org/abs/2207.08453
https://arxiv.org/abs/2209.12592


References III

[Wernhard and Bibel, 2021] Wernhard, C. and Bibel, W. (2021).
Learning from Łukasiewicz and Meredith: Investigations into proof structures.
In Platzer, A. and Sutcliffe, G., editors, CADE 28, volume 12699 of LNCS (LNAI), pages 58–75. Springer.

[Wernhard and Bibel, 2023] Wernhard, C. and Bibel, W. (2023).
Investigations into proof structures.
Preprint, http://cs.christophwernhard.com/papers/investigations/.

[Wos, 2001] Wos, L. (2001).
Conquering the Meredith single axiom.
J. Autom. Reasoning, 27(2):175–199.

25

http://cs.christophwernhard.com/papers/investigations/

