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LISA: A Proof Framework in Scala

Al for theorem proving needs libraries and frameworks to integrate and
manipulate formal knowledge.

We hope LISA framework can be useful because of its
- foundations on (TG) set theory — can semantically embed other foundations

- design with simple proof kernel (schematic FOL)

- implementation in Scala (well-supported ecosystem, DSLs, libraries for
distributed computing)
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Introduction

LISA is a proof assistant in continuous development.

- Based on FOL

- Small Kernel, hybrid LCF-style

- High programmability and integrability focus
- Written in Scala as an extensible library
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The Kernel

LISA uses First Order Logic as its foundational language, and extends it with
schematic function and predicate symbols.

P(0)AVz.(P(x) = 'P(z+1))F Va.P(x)

- Theory-agnostic kernel

- Uses Set Theory for mathematical library
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LISA uses a variation of Sequent Calculus LK.

- SequentsT' - A, with I and A sets of formulas

- Introduction rule for each logical symbol on each side + Cut, Weakening
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But strictly formal proofs can be excessively tedious for humans to write
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Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa
Ortholattices:

Distributivity: a A (bV ) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws

= sound approximation of Boolean equivalence
- Algorithm for quadratic-time equivalence and implication checking
- Computes a normal form

- Also considers alpha-equivalence, reflexivity and symmetry of equality and
more

Simon Guilloud, Mario Bucev, Dragana Milovancevic, and Viktor Kuncak. “Formula normalizations in verification”” In: International Conference on
Computer Aided Verification. Springer. 2023, pp. 398-422



The Kernel

- Small, around 1200 LOC.
- Written in a restricted, simple subset of Scala

- Possibly feasible for formal verification



1 val x = variable
2 val P = predicate(1)
3 val f = function(1)

noos

5 val fixedPointDoubleApplication = Theorem(
6 V(x, P(x) = P(f(x))) F P(x) = P(f(f(x)))

7 )

8 assume(V(x, P(x) = P(f(x))))

10 val stepl = have(P(x) = P(f(x))) by InstantiateForall

11 val step2 = have(P(f(x)) = P(f(f(x)))) by InstantiateForall
12

13 have(thesis) by Tautology.from(stepl, step2)

14 }
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Tactics and Writing Them

- Tactics are simply functions computing proofs
- Freely mix Scala code with LISA proofs and DSL
- Given a proof state, play with it as you want...

- ..return a proof at the end

10
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Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula

- if itis true, done

- if it is false, throw an error

- in any other case, choose your favourite atom, say A
- prove the formula with A — T

- prove the formula with A — L

- combine

i



object Tautology extends ProofTactic {

1

2 def solveFormula(f: Formula,

3 decisionsPos: List[Formula],

4 decisionsNeg: List[Formulal): proof.ProofTacticJudgement = {

5 // proves decisionsPos F f decisionsNeg

6

7 val normF = OLnormalForm(f)

8

9 if (normF = T) Restate(decisionsPos + f :: decisionsNeg)

10 else if (normF = 1) InvalidProofTactic("Not a propositional tautology")

1

2 else TacticSubproof {

13 val atom = findBestAtom(normF)

14

15 have(solveFormula(normF(atom — T), atom :: decisionsPos, decisionsNeg)) //
recursive

16 val step2 = thenHave(atom decisionsPos + normF :: decisionsNeg)

17 by Substitution(T <= atom)

18

19 have(solveFormula(normF(atom — 1), decisionsPos, atom :: decisionsNeg)) //
recursive

20 val step4 = thenHave(decisionsPos  normF :: atom :: decisionsNeg)

21 by Substitution(l <= atom)

2

23 have(decisionsPos + normF decisionsNeg) by Cut(step4, step2)

2% thenHave(decisionsPos + f decisionsNeg) by Restate

25 }

26 }

27}
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Mathematical Library

- Based on Tarski-Grothendieck (TG) Set Theory
- TG = ZFC with universes
- Set theory — generally accepted foundation among mathematicians

- Can formalize most modern mathematics

13
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- Functions and relations
- Partial and well orders

+ Ordinals
+ Transfinite induction and recursion



Mathematical Library

Currently, formalization includes:

- Functions and relations

- Partial and well orders

- Ordinals

- Transfinite induction and recursion

1 val transfiniteInduction = Theorem(

2 v(x, ordinal(x) = (¥(y, y € x = Q(y)) = Q(x)))
3 F v(x, ordinal(x) = Q(x))
4 ) 1

6 }
7 val transfiniteRecursion = Theorem(

8 ordinal(a) + 3!(g, functionalOver(g, a) A

9 v(b, b € a = (app(g, b) = F(restrictedFunction(g, b)))))
10 )

.‘% }



Experience with an undergrad student

- Formalization of Group Theory

- Inside Set Theory
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Experience with an undergrad student

- Formalization of Group Theory

- Inside Set Theory

- Homomorphisms, subgroups, etc.
- And some tactics!

15
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LISA/HOL

We plan to develop

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- Embed types as sets, including function types

- Corresponds to a “soft” type system: in practice one usually doesn’t write
fcrm

- Soft types carry information both for humans and for automation

Mike Gordon. Merging HOL with set theory. Tech. rep. University of Cambridge,
Computer Laboratory, 1994



LISA/Stainless

- Starting from Stainless, a program verifier for Scala
- Build foundations for more trustable program verification

- With more granular user feedback and interaction
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LISA/Stainless

1 def plusOne(x: Int): Int = {

2 require(x >= 0)
3 X + 1
4 } ensuring(res => res >= 1)

6 //$> stainless myFile.scala
7 //$> ... counterexample



LISA/Stainless

SMT-based automation works quite well, till it doesn't!
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LISA/Stainless

- Horn-clause driven verification backend

- Goal: Proof-producing program verification

- Integrate with the Eldarica Horn solver

- Augment to reconstruct LISA proofs

- Use proofs for feedback with higher granularity and readability

= program verification grounded in set-theory

Benefits outside of program verification too!
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- Goal: introducing more formal proofs to undergraduate students
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LISA/Education

- Goal: introducing more formal proofs to undergraduate students

- Turns out we already have most of the ingredients

20



Proofs for Functional Programs

Given the following lemmas:

(MAPNIL) Nil.map(f) === Nil
(MarpCoNs) (x :: xs).map(f) === f(x) :: xs.map(f)
(MAPTRNIL) Nil.mapTr (£, ys) === ys
(MAPTRCONS) (x :: xs).mapTr(f, ys) === xs.mapTr(f, ys ++ (f(x) :: Nil))
(NILAPPEND) Nil ++ xs === xs
(CONSAPPEND) (x :: xS) ++ ys === x :: (x5 ++ ys)

Let us first prove the following lemma:
(AccOuTt) l.mapTr(f, y :: ys) ===y :: l.mapTr(f, ys)

We prove it by induction on 1.

21



Question 8 Induction step: 1is x :: xs. Therefore, we need to prove:
(% :: xs).map(f) ===iyx :: xs) . mapTr(f, Nil)

We name the inductions hypothesis TH.
Starting from the left hand-side ((x :: xs).map (£)), what exact sequence of lemmas should we apply
to get the right hand-side ((x :: xs)<mapTr(f, Nil))?
[:I MarCons, NILAPPEND, AccOuT, TH, MaPTRCoNs
D MaprCons, NILApPEND; TH, AccOuT, MarTrRCONS
D MapTRrCoONS, [H, AccQuT, NILAPPEND, MAPCONS
|:\ MaprTRCoNs, NILAPPEND, IH, IH, MarPCoNs
[:| MarCons, IH, NILAPPEND, Ac¢cOuT, MAPTRCoONS
[[] MarCons, TH, NiLAPPEND, MAPTRCONS, TH
|:\ MarCons, IH, IH, NILAPPEND, MAPTRCONS
|:| MarCons, AccOuT, IH, NILAPPEND, MAPTRCONS
D MaprTRCONs, AccOuT, NILAPPEND, IH, MapCoNs
[:l MaprCons, IH, NILAPPEND, MAPTRCONS, AccOuT
[:I MarConNs, NILAPPEND, AccOuT, MAPTRCoNs, AccOuT
[:I MarCons, NILAPPEND, AccOuT, MAPTRCoNs, TH
[:l MapTRCoONs, [H, NILAPPEND, AccOuT, MaPCONS
[:| MarCons, IH, AccOuT, NILAPPEND, MAPTRCONS
[:I MarCons, NILAPPEND, [H, AccOuT, MAPTRCONS
[:| MaprCoNs, NILAPPEND, AccOuT, AccOuT, MAPTRCONS

22



Path to Integrated Program Proofs

Using LISA’s DSL and Scala extensions, we can have a similar formal syntax:

1 val mapTrEq = Theorem(
2 (x :: xs).map(f) = (x :: xs).mapTr(f, Nil)
) 1

5 }
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Path to Integrated Program Proofs

Using LISA’s DSL and Scala extensions, we can have a similar formal syntax:

1 val mapTrEq = Theorem(

P (x :: xs).map(f) = (x :: xs).mapTr(f, Nil)
) {

5 }

- Since LISA is a Scala library, it integrates with students’ existing IDE

- The syntax is intuitive enough, as it corresponds to actual functional
programs

23



LISA — Summary

- Proof Assistant in Scala

- Small kernel based on schematic FOL

- Proof and Tactic interface with LISA’s DSL

- Mathematical library based on TG set theory

Future plans:

- Embedding of HOL
- Integration with Horn-clause based program verification

- Proofs for undergraduate functional programming

24
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val myTheorem = Theorem(P A Q - Q A P) {
assume(P A Q)
have(Q A P) by Restate

26



g W

val myTheorem = Theorem(P A Q - Q A P) {
assume(P A Q)
have(Q A P) by Restate

Just Scala syntax!

have(
ConnectorFormula(And, Seq(Q, P))

)
.by(using proof)(Restate)

26
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