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LISA: A Proof Framework in Scala

AI for theorem proving needs libraries and frameworks to integrate and
manipulate formal knowledge.

We hope LISA framework can be useful because of its

• foundations on (TG) set theory — can semantically embed other foundations
• design with simple proof kernel (schematic FOL)
• implementation in Scala (well-supported ecosystem, DSLs, libraries for
distributed computing)
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LISA of the Present



Introduction

LISA is a proof assistant in continuous development.

• Based on FOL

• Small Kernel, hybrid LCF-style
• High programmability and integrability focus
• Written in Scala as an extensible library
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The Kernel

LISA uses First Order Logic as its foundational language, and extends it with
schematic function and predicate symbols.

′𝑃 (0) ∧ ∀𝑥. (′𝑃 (𝑥) ⟹ ′𝑃 (𝑥 + 1)) ⊢ ∀𝑥.′𝑃 (𝑥)

• Theory-agnostic kernel
• Uses Set Theory for mathematical library
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The Sequent Calculus LK

LISA uses a variation of Sequent Calculus LK.

• Sequents Γ ⊢ Δ, with Γ and Δ sets of formulas

• Introduction rule for each logical symbol on each side + Cut, Weakening

Γ ⊢ 𝜙[𝑠/′𝑥], Δ SubstEqΓ, 𝑠 = 𝑡, ⊢ 𝜙[𝑡/′𝑥], Δ

Γ ⊢ Δ InstPredSchemaΓ[𝜓( ⃗𝑣)/′𝑃 ] ⊢ Δ[𝜓( ⃗𝑣)/′𝑃 ]
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But strictly formal proofs can be excessively tedious for humans to write

⊢ 𝑎 ∧ (𝑏 ∨ 𝑐) 𝑎 ∧ (𝑐 ∨ 𝑏) ⊢ 𝑑
Cut⊢ 𝑑

Doesn’t work, but to swap 𝑏 and 𝑐...

⊢ 𝑎 ∧ (𝑏 ∨ 𝑐)

Hypothesis𝑎 ⊢ 𝑎 LeftAnd𝑎 ∧ (𝑏 ∨ 𝑐) ⊢ 𝑎

Hypothesis𝑏 ⊢ 𝑏 RightOr𝑏 ⊢ 𝑐 ∨ 𝑏
Hypothesis𝑐 ⊢ 𝑐 RightOr𝑐 ⊢ 𝑐 ∨ 𝑏 LeftOr𝑏 ∨ 𝑐 ⊢ 𝑐 ∨ 𝑏 LeftAnd𝑎 ∧ (𝑏 ∨ 𝑐) ⊢ 𝑐 ∨ 𝑏

RightAnd𝑎 ∧ (𝑏 ∨ 𝑐) ⊢ 𝑎 ∧ (𝑐 ∨ 𝑏)
Cut⊢ 𝑎 ∧ (𝑐 ∨ 𝑏) 𝑎 ∧ (𝑐 ∨ 𝑏) ⊢ 𝑑

Cut⊢ 𝑑
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Equivalence checking: Ortholattices

𝑎 ∧ (𝑏 ∨ 𝑐) (𝑐 ∨ 𝑏) ∧ 𝑎

Ortholattices:
Distributivity: 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) 7

Absorption: 𝑎 ∧ (𝑎 ∨ 𝑐) = 𝑎 3

• Satisfies all other Boolean laws
• ⟹ sound approximation of Boolean equivalence
• Algorithm for quadratic-time equivalence and implication checking
• Computes a normal form
• Also considers alpha-equivalence, reflexivity and symmetry of equality and
more

Simon Guilloud, Mario Bucev, Dragana Milovančević, and Viktor Kunčak. “Formula normalizations in verification.” In: International Conference on
Computer Aided Verification. Springer. 2023, pp. 398–422
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The Kernel

• Small, around 1200 LOC.
• Written in a restricted, simple subset of Scala
• Possibly feasible for formal verification

8



Proofs

1 val x = variable
2 val P = predicate(1)
3 val f = function(1)
4

5 val fixedPointDoubleApplication = Theorem(
6 ∀(x, P(x) ⟹ P(f(x))) ⊢ P(x) ⟹ P(f(f(x)))
7 ) {
8 assume(∀(x, P(x) ⟹ P(f(x))))
9

10 val step1 = have(P(x) ⟹ P(f(x))) by InstantiateForall
11 val step2 = have(P(f(x)) ⟹ P(f(f(x)))) by InstantiateForall
12

13 have(thesis) by Tautology.from(step1, step2)
14 }
15

9



Tactics and Writing Them

• Tactics are simply functions computing proofs

• Freely mix Scala code with LISA proofs and DSL
• Given a proof state, play with it as you want...
• ...return a proof at the end
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Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL”):

• normalize the formula
• if it is true, done
• if it is false, throw an error
• in any other case, choose your favourite atom, say 𝐴
• prove the formula with 𝐴 ↦ ⊤
• prove the formula with 𝐴 ↦ ⊥
• combine
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1 object Tautology extends ProofTactic {
2 def solveFormula(f: Formula,
3 decisionsPos: List[Formula],
4 decisionsNeg: List[Formula]): proof.ProofTacticJudgement = {
5 // proves decisionsPos ⊢ f :: decisionsNeg
6
7 val normF = OLnormalForm(f)
8
9 if (normF == ⊤) Restate(decisionsPos ⊢ f :: decisionsNeg)
10 else if (normF == ⊥) InvalidProofTactic("Not a propositional tautology")
11
12 else TacticSubproof {
13 val atom = findBestAtom(normF)
14
15 have(solveFormula(normF(atom → ⊤), atom :: decisionsPos, decisionsNeg)) //

recursive
16 val step2 = thenHave(atom :: decisionsPos ⊢ normF :: decisionsNeg)
17 by Substitution(⊤ ⟺ atom)
18
19 have(solveFormula(normF(atom → ⊥), decisionsPos, atom :: decisionsNeg)) //

recursive
20 val step4 = thenHave(decisionsPos ⊢ normF :: atom :: decisionsNeg)
21 by Substitution(⊥ ⟺ atom)
22
23 have(decisionsPos ⊢ normF :: decisionsNeg) by Cut(step4, step2)
24 thenHave(decisionsPos ⊢ f :: decisionsNeg) by Restate
25 }
26 }
27 }
28

12



Mathematical Library

• Based on Tarski-Grothendieck (TG) Set Theory

• TG = ZFC with universes
• Set theory — generally accepted foundation among mathematicians
• Can formalize most modern mathematics
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Mathematical Library

Currently, formalization includes:

• Functions and relations
• Partial and well orders
• Ordinals
• Transfinite induction and recursion

1 val transfiniteInduction = Theorem(
2 ∀(x, ordinal(x) ⟹ (∀(y, y ∈ x ⟹ Q(y)) ⟹ Q(x)))
3 ⊢ ∀(x, ordinal(x) ⟹ Q(x))
4 ) {
5 ...
6 }
7 val transfiniteRecursion = Theorem(
8 ordinal(a) ⊢ ∃!(g, functionalOver(g, a) ∧
9 ∀(b, b ∈ a ⟹ (app(g, b) ≡ F(restrictedFunction(g, b)))))
10 ) {
11 ...
12 }
13
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Experience with an undergrad student

• Formalization of Group Theory
• Inside Set Theory

• Homomorphisms, subgroups, etc.
• And some tactics!
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LISA of the Future



LISA/HOL

We plan to develop

• an embedding of Higher-Order Logic (HOL) into Set Theory.

• Embed types as sets, including function types
• Corresponds to a “soft” type system: in practice one usually doesn’t write

∅ ⊂ 𝜋
• Soft types carry information both for humans and for automation

Mike Gordon. Merging HOL with set theory. Tech. rep. University of Cambridge,
Computer Laboratory, 1994
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LISA/Stainless

• Starting from Stainless, a program verifier for Scala
• Build foundations for more trustable program verification
• With more granular user feedback and interaction
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LISA/Stainless

1 def plusOne(x: Int): Int = {
2 x + 1
3 }
4
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LISA/Stainless

1 def plusOne(x: Int): Int = {
2 require(x >= 0)
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LISA/Stainless

1 def plusOne(x: Int): Int = {
2 require(x >= 0)
3 x + 1
4 } ensuring(res => res >= 1)
5

6 //$> stainless myFile.scala
7 //$> ... counterexample
8
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LISA/Stainless

SMT-based automation works quite well, till it doesn’t!
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LISA/Stainless

• Horn-clause driven verification backend

• Goal: Proof-producing program verification
• Integrate with the Eldarica Horn solver
• Augment to reconstruct LISA proofs
• Use proofs for feedback with higher granularity and readability
• ⟹ program verification grounded in set-theory

Benefits outside of program verification too!
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LISA/Education

• Goal: introducing more formal proofs to undergraduate students

• Turns out we already have most of the ingredients
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• Goal: introducing more formal proofs to undergraduate students
• Turns out we already have most of the ingredients
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Proofs for Functional Programs
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Path to Integrated Program Proofs

Using LISA’s DSL and Scala extensions, we can have a similar formal syntax:
1 val mapTrEq = Theorem(
2 (x :: xs).map(f) ≡ (x :: xs).mapTr(f, Nil)
3 ) {
4 ...
5 }
6

• Since LISA is a Scala library, it integrates with students’ existing IDE
• The syntax is intuitive enough, as it corresponds to actual functional
programs

23



Path to Integrated Program Proofs

Using LISA’s DSL and Scala extensions, we can have a similar formal syntax:
1 val mapTrEq = Theorem(
2 (x :: xs).map(f) ≡ (x :: xs).mapTr(f, Nil)
3 ) {
4 ...
5 }
6

• Since LISA is a Scala library, it integrates with students’ existing IDE
• The syntax is intuitive enough, as it corresponds to actual functional
programs

23



LISA — Summary

• Proof Assistant in Scala
• Small kernel based on schematic FOL
• Proof and Tactic interface with LISA’s DSL
• Mathematical library based on TG set theory

Future plans:

• Embedding of HOL
• Integration with Horn-clause based program verification
• Proofs for undergraduate functional programming
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1 val myTheorem = Theorem(P ∧ Q ⊢ Q ∧ P) {
2 assume(P ∧ Q)
3 have(Q ∧ P) by Restate
4 }
5

Just Scala syntax!
1 have(
2 ConnectorFormula(And, Seq(Q, P))
3 )
4 .by(using proof)(Restate)
5
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