LISA

First-Order Interactive Proof Assistant

Al: ‘ ’
¢
\d

Sankalp Simon Viktor Dragana Philipp
Gambhir! Guilloud? Kuncak® Milovancevic! Rimmer?

! Laboratory for Automated Reasoning and Analysis, EPFL, Switzerland
2 Faculty of Informatics and Data Science, University of Regensburg, Germany

LISA: A Proof Framework in Scala

Al for theorem proving needs libraries and frameworks to integrate and
manipulate formal knowledge.

We hope LISA framework can be useful because of its
- foundations on (TG) set theory — can semantically embed other foundations

- design with simple proof kernel (schematic FOL)

- implementation in Scala (well-supported ecosystem, DSLs, libraries for
distributed computing)

LISA of the Present

Introduction

LISA is a proof assistant in continuous development.

- Based on FOL

Introduction

LISA is a proof assistant in continuous development.

- Based on FOL
- Small Kernel, hybrid LCF-style

Introduction

LISA is a proof assistant in continuous development.

- Based on FOL
- Small Kernel, hybrid LCF-style
- High programmability and integrability focus

Introduction

LISA is a proof assistant in continuous development.

- Based on FOL

- Small Kernel, hybrid LCF-style

- High programmability and integrability focus
- Written in Scala as an extensible library

The Kernel

LISA uses First Order Logic as its foundational language, and extends it with
schematic function and predicate symbols.

P(0)AVz.(P(x) = 'P(z+1))F Va.P(x)

The Kernel

LISA uses First Order Logic as its foundational language, and extends it with
schematic function and predicate symbols.

P(0)AVz.(P(x) = 'P(z+1))F Va.P(x)

- Theory-agnostic kernel

- Uses Set Theory for mathematical library

The Sequent Calculus LK

LISA uses a variation of Sequent Calculus LK.

- SequentsT' - A, with I and A sets of formulas

The Sequent Calculus LK

LISA uses a variation of Sequent Calculus LK.

- SequentsT' - A, with I and A sets of formulas

- Introduction rule for each logical symbol on each side + Cut, Weakening

The Sequent Calculus LK

LISA uses a variation of Sequent Calculus LK.

- SequentsT' - A, with I and A sets of formulas

- Introduction rule for each logical symbol on each side + Cut, Weakening

The Sequent Calculus LK

LISA uses a variation of Sequent Calculus LK.

- SequentsT' - A, with I and A sets of formulas

- Introduction rule for each logical symbol on each side + Cut, Weakening

I'Fols/x], A
Ts— i /. A UPStEd
I-A InstPredSchema

Llp(@) /P = Al (0)/'P]

But strictly formal proofs can be excessively tedious for humans to write

FaA(bVe) aNh(cVb)d
Fd

Cut

But strictly formal proofs can be excessively tedious for humans to write

FaA(bVe) aNh(cVb)d

Cut
Fd
Doesn’t work, but to swap b and c...
T Hypothesis Hypothesis

——— Hypothesis ¢ e LeftOr
—_oaba 7 LeftAnd _ bvebeVvh LeftAnd
ah(bVe)la aAN(bVe)leVb RightAnd

FanA(bVe) aN(bVe)Ean(cVd) . §
FaA(cvb) ! an(cVb) Fd

Ed Cut

Equivalence checking: Ortholattices

al(bVec) (cVb)ANa

Equivalence checking: Ortholattices

al(bVe) = (cVb)ANa

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:
Distributivity: a A (bV ¢) = (aAb) V (aAc)

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:

Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:

Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:
Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws
- = sound approximation of Boolean equivalence

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:

Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws
- = sound approximation of Boolean equivalence
- Algorithm for quadratic-time equivalence and implication checking

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:

Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws

- = sound approximation of Boolean equivalence

- Algorithm for quadratic-time equivalence and implication checking
- Computes a normal form

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:

Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws

- = sound approximation of Boolean equivalence

- Algorithm for quadratic-time equivalence and implication checking

- Computes a normal form

- Also considers alpha-equivalence, reflexivity and symmetry of equality and
more

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa

Ortholattices:

Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws

- = sound approximation of Boolean equivalence

- Algorithm for quadratic-time equivalence and implication checking

- Computes a normal form

- Also considers alpha-equivalence, reflexivity and symmetry of equality and
more

Equivalence checking: Ortholattices

anN(bVe) ~op (cVb)Aa
Ortholattices:

Distributivity: a A (bV) =(aAb)V (aNec) X
Absorption: a A (aVe)=a v/

- Satisfies all other Boolean laws

= sound approximation of Boolean equivalence
- Algorithm for quadratic-time equivalence and implication checking
- Computes a normal form

- Also considers alpha-equivalence, reflexivity and symmetry of equality and
more

Simon Guilloud, Mario Bucev, Dragana Milovancevic, and Viktor Kuncak. “Formula normalizations in verification”” In: International Conference on
Computer Aided Verification. Springer. 2023, pp. 398-422

The Kernel

- Small, around 1200 LOC.
- Written in a restricted, simple subset of Scala

- Possibly feasible for formal verification

1 val x = variable
2 val P = predicate(1)
3 val f = function(1)

noos

5 val fixedPointDoubleApplication = Theorem(
6 V(x, P(x) = P(f(x))) F P(x) = P(f(f(x)))

7)

8 assume(V(x, P(x) = P(f(x))))

10 val stepl = have(P(x) = P(f(x))) by InstantiateForall

11 val step2 = have(P(f(x)) = P(f(f(x)))) by InstantiateForall
12

13 have(thesis) by Tautology.from(stepl, step2)

14 }

Tactics and Writing Them

- Tactics are simply functions computing proofs

10

Tactics and Writing Them

- Tactics are simply functions computing proofs
- Freely mix Scala code with LISA proofs and DSL

10

Tactics and Writing Them

- Tactics are simply functions computing proofs
- Freely mix Scala code with LISA proofs and DSL

- Given a proof state, play with it as you want...

10

Tactics and Writing Them

- Tactics are simply functions computing proofs
- Freely mix Scala code with LISA proofs and DSL
- Given a proof state, play with it as you want...

- ..return a proof at the end

10

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

1

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula

i

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula

- if itis true, done

i

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula
- if itis true, done

- if it is false, throw an error

i

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula
- if itis true, done
- if it is false, throw an error

- in any other case, choose your favourite atom, say A

i

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula

- if itis true, done

- if it is false, throw an error

- in any other case, choose your favourite atom, say A

- prove the formula with A — T

i

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula

- if itis true, done

- if it is false, throw an error

- in any other case, choose your favourite atom, say A
- prove the formula with A — T

- prove the formula with A — L

i

Tactics and Writing Them — Propositional Solver

To prove a formula (“OL-DPLL"):

- normalize the formula

- if itis true, done

- if it is false, throw an error

- in any other case, choose your favourite atom, say A
- prove the formula with A — T

- prove the formula with A — L

- combine

i

object Tautology extends ProofTactic {

1

2 def solveFormula(f: Formula,

3 decisionsPos: List[Formula],

4 decisionsNeg: List[Formulal): proof.ProofTacticJudgement = {

5 // proves decisionsPos F f decisionsNeg

6

7 val normF = OLnormalForm(f)

8

9 if (normF = T) Restate(decisionsPos + f :: decisionsNeg)

10 else if (normF = 1) InvalidProofTactic("Not a propositional tautology")

1

2 else TacticSubproof {

13 val atom = findBestAtom(normF)

14

15 have(solveFormula(normF(atom — T), atom :: decisionsPos, decisionsNeg)) //
recursive

16 val step2 = thenHave(atom decisionsPos + normF :: decisionsNeg)

17 by Substitution(T <= atom)

18

19 have(solveFormula(normF(atom — 1), decisionsPos, atom :: decisionsNeg)) //
recursive

20 val step4 = thenHave(decisionsPos normF :: atom :: decisionsNeg)

21 by Substitution(l <= atom)

2

23 have(decisionsPos + normF decisionsNeg) by Cut(step4, step2)

2% thenHave(decisionsPos + f decisionsNeg) by Restate

25 }

26 }

27}

12

Mathematical Library

- Based on Tarski-Grothendieck (TG) Set Theory

13

Mathematical Library

- Based on Tarski-Grothendieck (TG) Set Theory

« TG = ZFC with universes

13

Mathematical Library

- Based on Tarski-Grothendieck (TG) Set Theory
- TG = ZFC with universes

- Set theory — generally accepted foundation among mathematicians

13

Mathematical Library

- Based on Tarski-Grothendieck (TG) Set Theory
- TG = ZFC with universes
- Set theory — generally accepted foundation among mathematicians

- Can formalize most modern mathematics

13

Mathematical Library

Currently, formalization includes:

- Functions and relations
- Partial and well orders

+ Ordinals
+ Transfinite induction and recursion

Mathematical Library

Currently, formalization includes:

- Functions and relations

- Partial and well orders

- Ordinals

- Transfinite induction and recursion

1 val transfiniteInduction = Theorem(

2 v(x, ordinal(x) = (¥(y, y € x = Q(y)) = Q(x)))
3 F v(x, ordinal(x) = Q(x))
4) 1

6 }
7 val transfiniteRecursion = Theorem(

8 ordinal(a) + 3!(g, functionalOver(g, a) A

9 v(b, b € a = (app(g, b) = F(restrictedFunction(g, b)))))
10)

.‘% }

Experience with an undergrad student

- Formalization of Group Theory

- Inside Set Theory

15

Experience with an undergrad student

- Formalization of Group Theory

- Inside Set Theory

- Homomorphisms, subgroups, etc.
- And some tactics!

15

LISA of the Future

LISA/HOL

We plan to develop

- an embedding of Higher-Order Logic (HOL) into Set Theory.

LISA/HOL

We plan to develop

- an embedding of Higher-Order Logic (HOL) into Set Theory.

- Embed types as sets, including function types

LISA/HOL

We plan to develop

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- Embed types as sets, including function types

- Corresponds to a “soft” type system: in practice one usually doesn’t write
fcrm

LISA/HOL

We plan to develop

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- Embed types as sets, including function types

- Corresponds to a “soft” type system: in practice one usually doesn’t write
fcrm

- Soft types carry information both for humans and for automation

LISA/HOL

We plan to develop

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- Embed types as sets, including function types

- Corresponds to a “soft” type system: in practice one usually doesn’t write
fcrm

- Soft types carry information both for humans and for automation

LISA/HOL

We plan to develop

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- Embed types as sets, including function types

- Corresponds to a “soft” type system: in practice one usually doesn’t write
fcrm

- Soft types carry information both for humans and for automation

Mike Gordon. Merging HOL with set theory. Tech. rep. University of Cambridge,
Computer Laboratory, 1994

LISA/Stainless

- Starting from Stainless, a program verifier for Scala
- Build foundations for more trustable program verification

- With more granular user feedback and interaction

LISA/Stainless

1 def plusOne(x: Int): Int = {
2 X + 1

}

LISA/Stainless

1 def plusOne(x: Int): Int = {
2 require(x >= 0)
3 x + 1

LISA/Stainless

1 def plusOne(x: Int): Int = {

2 require(x >= 0)
3 X + 1
4 } ensuring(res => res >= 1)

LISA/Stainless

1 def plusOne(x: Int): Int = {

2 require(x >= 0)
3 X + 1
4 } ensuring(res => res >= 1)

6 //$> stainless myFile.scala
7 //$> ... counterexample

LISA/Stainless

SMT-based automation works quite well, till it doesn't!

LISA/Stainless

- Horn-clause driven verification backend

LISA/Stainless

- Horn-clause driven verification backend

- Goal: Proof-producing program verification

LISA/Stainless

- Horn-clause driven verification backend
- Goal: Proof-producing program verification

- Integrate with the Eldarica Horn solver

LISA/Stainless

- Horn-clause driven verification backend
- Goal: Proof-producing program verification
- Integrate with the Eldarica Horn solver

- Augment to reconstruct LISA proofs

LISA/Stainless

- Horn-clause driven verification backend

- Goal: Proof-producing program verification

- Integrate with the Eldarica Horn solver

- Augment to reconstruct LISA proofs

- Use proofs for feedback with higher granularity and readability

LISA/Stainless

- Horn-clause driven verification backend

- Goal: Proof-producing program verification

- Integrate with the Eldarica Horn solver

- Augment to reconstruct LISA proofs

- Use proofs for feedback with higher granularity and readability

- = program verification grounded in set-theory

LISA/Stainless

- Horn-clause driven verification backend

- Goal: Proof-producing program verification

- Integrate with the Eldarica Horn solver

- Augment to reconstruct LISA proofs

- Use proofs for feedback with higher granularity and readability

- = program verification grounded in set-theory

LISA/Stainless

- Horn-clause driven verification backend

- Goal: Proof-producing program verification

- Integrate with the Eldarica Horn solver

- Augment to reconstruct LISA proofs

- Use proofs for feedback with higher granularity and readability

= program verification grounded in set-theory

Benefits outside of program verification too!

LISA/Education

- Goal: introducing more formal proofs to undergraduate students

20

LISA/Education

- Goal: introducing more formal proofs to undergraduate students

- Turns out we already have most of the ingredients

20

Proofs for Functional Programs

Given the following lemmas:

(MAPNIL) Nil.map(f) === Nil
(MarpCoNs) (x :: xs).map(f) === f(x) :: xs.map(f)
(MAPTRNIL) Nil.mapTr (£, ys) === ys
(MAPTRCONS) (x :: xs).mapTr(f, ys) === xs.mapTr(f, ys ++ (f(x) :: Nil))
(NILAPPEND) Nil ++ xs === xs
(CONSAPPEND) (x :: xS) ++ ys === x :: (x5 ++ ys)

Let us first prove the following lemma:
(AccOuTt) l.mapTr(f, y :: ys) ===y :: l.mapTr(f, ys)

We prove it by induction on 1.

21

Question 8 Induction step: 1is x :: xs. Therefore, we need to prove:
(% :: xs).map(f) ===iyx :: xs) . mapTr(f, Nil)

We name the inductions hypothesis TH.
Starting from the left hand-side ((x :: xs).map (£)), what exact sequence of lemmas should we apply
to get the right hand-side ((x :: xs)<mapTr(f, Nil))?
[:I MarCons, NILAPPEND, AccOuT, TH, MaPTRCoNs
D MaprCons, NILApPEND; TH, AccOuT, MarTrRCONS
D MapTRrCoONS, [H, AccQuT, NILAPPEND, MAPCONS
|:\ MaprTRCoNs, NILAPPEND, IH, IH, MarPCoNs
[:| MarCons, IH, NILAPPEND, Ac¢cOuT, MAPTRCoONS
[[] MarCons, TH, NiLAPPEND, MAPTRCONS, TH
|:\ MarCons, IH, IH, NILAPPEND, MAPTRCONS
|:| MarCons, AccOuT, IH, NILAPPEND, MAPTRCONS
D MaprTRCONs, AccOuT, NILAPPEND, IH, MapCoNs
[:l MaprCons, IH, NILAPPEND, MAPTRCONS, AccOuT
[:I MarConNs, NILAPPEND, AccOuT, MAPTRCoNs, AccOuT
[:I MarCons, NILAPPEND, AccOuT, MAPTRCoNs, TH
[:l MapTRCoONs, [H, NILAPPEND, AccOuT, MaPCONS
[:| MarCons, IH, AccOuT, NILAPPEND, MAPTRCONS
[:I MarCons, NILAPPEND, [H, AccOuT, MAPTRCONS
[:| MaprCoNs, NILAPPEND, AccOuT, AccOuT, MAPTRCONS

22

Path to Integrated Program Proofs

Using LISA’s DSL and Scala extensions, we can have a similar formal syntax:

1 val mapTrEq = Theorem(
2 (x :: xs).map(f) = (x :: xs).mapTr(f, Nil)
) 1

5 }

23

Path to Integrated Program Proofs

Using LISA’s DSL and Scala extensions, we can have a similar formal syntax:

1 val mapTrEq = Theorem(

P (x :: xs).map(f) = (x :: xs).mapTr(f, Nil)
) {

5 }

- Since LISA is a Scala library, it integrates with students’ existing IDE

- The syntax is intuitive enough, as it corresponds to actual functional
programs

23

LISA — Summary

- Proof Assistant in Scala

- Small kernel based on schematic FOL

- Proof and Tactic interface with LISA’s DSL

- Mathematical library based on TG set theory

Future plans:

- Embedding of HOL
- Integration with Horn-clause based program verification

- Proofs for undergraduate functional programming

24

[1]

[2]

References

Simon Guilloud, Mario Bucev, Dragana Milovancevic, and Viktor Kuncak.
“Formula normalizations in verification.” In: International Conference on
Computer Aided Verification. Springer. 2023, pp. 398-422.

Mike Gordon. Merging HOL with set theory. Tech. rep. University of Cambridge,
Computer Laboratory, 1994,

25

val myTheorem = Theorem(P A Q - Q A P) {
assume(P A Q)
have(Q A P) by Restate

26

g W

val myTheorem = Theorem(P A Q - Q A P) {
assume(P A Q)
have(Q A P) by Restate

Just Scala syntax!

have(
ConnectorFormula(And, Seq(Q, P))

)
.by(using proof)(Restate)

26

	LISA of the Present
	LISA of the Future
	References

