
Markup Language for
Mathematical Reasoning

with LLMs
Ryutaro Yamauchi1 Sho Sonoda2 Akiyoshi Sannai3 Wataru Kumagai1

1The university of Tokyo 2RIKEN Center for AIP 3Kyoto University

Large Language Models

LLMText Next text

LLMQuestion AnswerPrompt

LLM
Message1

(user)
Prompt

Message2

(LLM)

Message3

(user)
Message4

(LLM)

Mathematical reasoning with LLMs

• Example of Chain-of-Thought prompting

Q: Claire makes a 3 egg omelet every morning
for breakfast. How many dozens of eggs will
she eat in 4 weeks?
A: Think step-by-step.

Output> Claire makes a 3 egg omelet every
morning. That means she eats 3 eggs per day.
Multiply 3 eggs per day by 7 days in a week to
get 21 eggs per week. Multiply 21 eggs per
week by 4 weeks to get 84 eggs in 4 weeks.
Divide 84 eggs by 12 eggs per dozen to get 7
dozens of eggs in 4 weeks. Therefore, Claire
will eat 7 dozens of eggs in 4 weeks.

Q: Claire makes a 3 egg omelet every morning
for breakfast. How many dozens of eggs will she
eat in 4 weeks?
A:

Output> Claire will eat 12 dozen eggs in 4 weeks.

Without Chain-of-Thought

Chain-of-Thought

Dealing with inference errors of LLMs

• LLMs can perform mathematical reasoning, but they often make mistakes.

• There is some way to reduce inference errors:

• Further increasing the model and dataset size.

• Finetuning LLMs on datasets contain mathematical contents.

• Integrating LLMs with external tools.

• Self-consistency prompting.

LLM with external Tools

LLM
Python

code InterpreterProblem Answer

LLM

Chain of

Thought

Think

Problem AnswerLLM

Python

code

Python

LLM

Interpreter

Goal: stable feedback loop between LLM and
external tools for error self-correction

• Construct an interaction loop between LLMs and the Python REPL by
having LLMs generate both the CoT and the Python code.

• This allows LLMs to have two reasoning paths, CoT and Python code
execution, and is expected to improve the reasoning performance by self-
consistency.

• Problems:

• When the interaction loop is repeated, the behavior of the LLM
becomes unstable.

• LLMs often behave in ways that are not expected.

Markup Language for interacting with LLMs

• We defined an XML-like markup language and gave LLMs its grammar as
a prompt to have LLM output structured text in the markup language.

• Advantages:

• Because the text is decorated with tags, it is clear what is written where.
Also, because it can be parsed by parser, it is easy to extract and
execute the program code output by LLMs, or to automatically remove
inappropriate behavior of LLMs.

• By dividing the text into sections by tags, reasoning using the CoT
method and input to external tools (e.g., Python code) can coexist in
the same text without mixing.

• By defining the relationship between tags, we can have LLMs consider
the content of a specific tag as a higher priority sentence than other
tags.

Grammer of the markup language

• All text must be enclosed in tags. e.g., <TAG>contents</TAG>.

• The following tags are defined in the markup language:

• DEFINE: This tag defines a rule or tag. The grammar of the markup
language is also defined by this tag.

• THINK: Represents a thought process.

• PYTHON: Represents an executable Python code.

• OUTPUT: This tag is used to feed back the results of code execution to
LLM.

• PROBLEM: Represents a problem to be solved.

• ANSWER: Represents an answer to the problem.

System overview

• Implemented using OpenAI API.

• Assistant (ChatGPT): Solve the problem using PYTHON / THINK tag.

• System: Parses the output of assistant, removes invalid elements from it,
and feeds back the results of the tool's execution to the assistant.

Reasoning Flow

1. The system inputs the grammar of the
markup language and the problem to the
assistant.

2. The assistant performs reasoning using
THINK and PYTHON tags.

3. The system analyzes the output of the
assistant, and if it contains a PYTHON tag, it
executes the code and returns the result
using an OUTPUT tag. If the assistant is
using inappropriate tags, the element is
deleted.

4. Repeat steps 2 and 3 until an answer is
obtained, then the assistant uses an
ANSWER tag.

OUTPUT tag priority instruction

• Once the language model makes a reasoning error in the CoT, it considers
the code buggy even if it subsequently writes correct Python code and
receives correct answer.

• To prevent this, we give an instruction LLM to trust calculations done using
Python (i.e., the contents of the OUTPUT tag) over calculations done
within the THINK tag.

• Without this instruction, LLM never have modified the contents of THINK,
but with this instruction, it was able to modify the CoT in many cases.

• Being able to set textual nuances and priorities is thus one of the key
advantages of using a markup language.

Example of Prompt

Experiments

• Evaluate the method on two datasets.

• GSM8K dataset[1]: grade-school level math word problems.

• MATH dataset[2]: challenging competitive math problems.

• Baselines

• Chain-of-Thought: without external tools.

• Program-aided Language Model [3]: without CoT & feedback.

1. https://arxiv.org/abs/2110.14168
2. https://arxiv.org/abs/2103.03874
3. https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2211.10435

Results

• On the GSM8K data set, our method is slightly
inferior to PAL. On the other hand, our method
performs better on the MATH dataset.
• Since most of the GSM8K problems can be

answered correctly only with Python code, the CoT
may have been rather a source of reasoning errors.

• Our method has the advantage in high-
difficulty problems.

Example 1: Mistake in CoT, corrected using Python.

Example 2: Ignore system feedback.

<- correct answer

Example 3: Incorrect Python code, corrected by CoT

Conclusion

• Having LLM generate structured output enables seamless integration
between the LLM and external tools, control of the LLM, and helps the
LLM recognize mistakes.

• As a result, LLM's mathematical reasoning ability is enhanced, especially
on challenging problems.

• However, it is questionable whether LLMs are truly aware of their mistakes.

	スライド 1: Markup Language for Mathematical Reasoning with LLMs
	スライド 2: Large Language Models
	スライド 3: Mathematical reasoning with LLMs
	スライド 4: Dealing with inference errors of LLMs
	スライド 5: LLM with external Tools
	スライド 6: Goal: stable feedback loop between LLM and external tools for error self-correction
	スライド 7: Markup Language for interacting with LLMs
	スライド 8: Grammer of the markup language
	スライド 9: System overview
	スライド 10: Reasoning Flow
	スライド 11: OUTPUT tag priority instruction
	スライド 12: Example of Prompt
	スライド 13: Experiments
	スライド 14: Results
	スライド 15: Example 1: Mistake in CoT, corrected using Python.
	スライド 16: Example 2: Ignore system feedback.
	スライド 17: Example 3: Incorrect Python code, corrected by CoT
	スライド 18: Conclusion

