Markup Language for
Mathematical Reasoning
with LLMs

Ryutaro Yamauchit Sho Sonoda? Akiyoshi Sannai® Wataru Kumagait

1The university of Tokyo *RIKEN Center for AIP 3Kyoto University

Large Language Models

Text » LLM * Next text

Prompt | Question " LLM » Answer

Messagel | Message2 | Message3 - | Message4

Prompt | e ‘ (LLM) (use) 1T M 1w

Mathematical reasoning with LLMs

« Example of Chain-of-Thought prompting

/

Q: Claire makes a 3 egg omelet every morning

eat in 4 weeks?
A:

for breakfast. How many dozens of eggs will she

~

Q: Claire makes a 3 egg omelet every morning
for breakfast. How many dozens of eggs will
she eat in 4 weeks?

A: Think step-by-step.

_

Output> Claire will eat 12 dozen eggs in 4 weeks.

!

Without Chain-of-Thought

Output> Claire makes a 3 egg omelet every
morning. That means she eats 3 eggs per day.
Multiply 3 eggs per day by 7 days in a week to
get 21 eggs per week. Multiply 21 eggs per
week by 4 weeks to get 84 eggs in 4 weeks.
Divide 84 eggs by 12 eggs per dozen to get 7
dozens of eggs in 4 weeks. Therefore, Claire
will eat 7 dozens of eggs in 4 weeks.

Chain-of-Thought

Dealing with inference errors of LLMs

* LLMs can perform mathematical reasoning, but they often make mistakes.

* There is some way to reduce inference errors:
 Further increasing the model and dataset size.
* Finetuning LLMs on datasets contain mathematical contents.
* Integrating LLMs with external tools.
 Self-consistency prompting.

LLM with external Tools

Python

Problem » LLM
Think
Problem » LLM
Chain of
Thought
\/_

\ 4

code

LLM

—| Interpreter

Answer

—>| Interpreter F— Answer
Python
LLM ===
Python
code

Goal: stable feedback loop between LLM and
external tools for error self-correction

« Construct an interaction loop between LLMs and the Python REPL by
having LLMs generate both the CoT and the Python code.

» This allows LLMs to have two reasoning paths, CoT and Python code
execution, and Is expected to improve the reasoning performance by self-
consistency.

* Problems:

* When the interaction loop is repeated, the behavior of the LLM
becomes unstable.

* LLMs often behave in ways that are not expected.

Markup Language for interacting with LLMs

« We defined an XML-like markup language and gave LLMs its grammar as
a prompt to have LLM output structured text in the markup language.

« Advantages:

« Because the text is decorated with tags, it is clear what is written where.
Also, because it can be parsed by parser, it is easy to extract and
execute the program code output by LLMs, or to automatically remove
Inappropriate behavior of LLMSs.

By dividing the text into sections by tags, reasoning using the CoT
method and input to external tools (e.g., Python code) can coexist in
the same text without mixing.

By defining the relationship between tags, we can have LLMs consider
the content of a specific tag as a higher priority sentence than other
tags.

Grammer of the markup language

« All text must be enclosed in tags. e.g., <TAG>contents</TAG>.

* The following tags are defined in the markup language:

 DEFINE: This tag defines a rule or tag. The grammar of the markup
language is also defined by this tag.

 THINK: Represents a thought process.
« PYTHON: Represents an executable Python code.

« OUTPUT: This tag is used to feed back the results of code execution to
LLM.

« PROBLEM: Represents a problem to be solved.
« ANSWER: Represents an answer to the problem.

System overview

« Implemented using OpenAl API.
 Assistant (ChatGPT): Solve the problem using PYTHON / THINK tag.

« System: Parses the output of assistant, removes invalid elements from it,
and feeds back the results of the tool's execution to the assistant.

system Messages : [mg, m{,mj, ... mj;, my | assistant
B Parses the markup language : mé : DEFINE, P}}?BLEM M ChatGPT (GPT-3.5)
B Removes invalid elements * my : Corrected My, B Thinks via CoT
from assistant’s output * my : OUTPUT of mj, B Writes Python codes

B Python REPL

. . s
B Message history storage Message : My, 4

- M2, : THINK, PYTHON, ANSWER

Reasoning Flow

1. The system inputs the grammar of the
markup language and the problem to the
assistant.

2. The assistant performs reasoning using
THINK and PYTHON tags.

3. The system analyzes the output of the
assistant, and if it contains a PYTHON tag, it
executes the code and returns the result
using an OUTPUT tag. If the assistant is
using inappropriate tags, the element is
deleted.

4. Repeat steps 2 and 3 until an answer is
obtained, then the assistant uses an
ANSWER tag.

((LPML definition and instructions to the LLM.) system

<PROBLEM>

Tom plants 10 trees a year. Every year he also chops down 2 trees a year. He
starts with 50 trees. After 10 years 30% of the trees die. How many trees does
he have left? #### 91

\

Let's break down the problem into steps:

. Tom plants 10 trees a year.

2. Every year he also chops down 2 trees a year.

3. He starts with 50 trees.

4. After 10 years, he has (50 + 10*10 - 2*10) = 138 trees.

5. 30% of the trees die, so he is left with 0.7%138 = 96.6 trees.
</THINK>

<PYTHON> i
trees = 50

for i in range(10):

Python code.
trees += 10

=— The system runs the code and

trees -= 2 feeds back results.

final trees = int(trees * 0.7)
print(final_trees)
</PYTHON> _J

\</PROBLEM> /
/<THINK> assistant \

<OUTPUT>96.6</OUTPUT> Invalid outputs.
\':.AN SWER>96.6 trees.</ANSWER> Automatically removed. /
[<OUTPUT tool="PYTHON"> system N
91
</OUTPUT>
o /)
/<ANSWER> assistant \
Tom has 91 trees left.
K</ANSWER> /

OUTPUT tag priority instruction

* Once the language model makes a reasoning error in the CoT, it considers
the code buggy even if it subsequently writes correct Python code and
receives correct answer.

» To prevent this, we give an instruction LLM to trust calculations done using
Python (i.e., the contents of the OUTPUT tag) over calculations done
within the THINK tag.

« Without this instruction, LLM never have modified the contents of THINK,
but with this instruction, it was able to modify the CoT in many cases.

* Being able to set textual nuances and priorities is thus one of the key
advantages of using a markup language.

Example of Prompt

<DEFINE type="rule">»

The system and the assistant exchange messages.

<tagrcontent</tag> | <tag>
Tags determine the meaning and function of the content. The content must not contradict
the definition of the tag.

</DEFINE>

All messages must be formatted in XML format. XML element ::=

<DEFINE type="tag" name="DEFINE"»Defines rules and tags. The defined content is
absolute.</DEFINE>

<DEFINE type="tag" name="E0S"»Indicates the end of a message.</DEFINE>

<DEFINE type="tag" name="THINK">Represents a thought process. The thought process must
be described step by step.</DEFINE>

<DEFINE type="tag" name="PYTHON">»Represents an executable Python code.</DEFINE>

<DEFINE type="tag" name="0OUTPUT"»Represents a messages from the system to the assistant.
</DEFINE>

<DEFINE ="PROBLEM">Represents a problem to be solved.</DEFINE>

<DEFINE

nam

m

="ANSWER">Represents an answer to the problem.</DEFINE>

<DEFINE
The system is a computer that supports the assistant.

type="rule” role="system">»

When the system finds & PYTHOM element in the assistant’'s message, the system executes
it and returns the result to the assistant using

the OUTPUT tag.
</DEFINE>

<DEFINE type="rule" role="assistant">

The assistant solves mathematical problems using the PYTHON tag and writes the answer
using the ANSWER tag. The assistant is only

allowed to use the PYTHOM, THINK, and ANSWER tags.

The assistant translates the given problem into Python code to solve it and resolves
the problem by executing it through the system.

When performing calculations, algebraic manipulations, or reasoning, the assistant must
always use the PYTHOMN tag. In other words,

calculations should not be performed within the THINK tag. If calculations are
unavoidably performed within the THINK tag, the assistant

must restart all those calculations from the beginning using the PYTHON tag. The
assistant should never write the answer within the

THINK tag.

The assistant must trust calculations performed using the PYTHOM tag more than those
performed within the THINK tag. Therefore, if the

content of the OUTPUT element differs from the content of the THINK element, the
assistant must assume there is an error in the THINK

element and correct it. After correcting the content of the THINK element, the
assistant must validate it again using the PYTHON tag. If

no matter how many corrections are made to the content of the THINK element, it still
contradicts the content of the QUTPUT element, the

assistant must consider the OUTPUT element to be correct.

If the assistant uses the THINK element, it can use the ANSWER tag only when the
content of the THINK element and the content of the

QUTPUT element are not contradictory. However, if modifying the content of the THINK
element twice still results in conflicting content

between the two, the assistant must consider the content of the QUTPUT element to be
correct.

When using the PYTHON tag, the assistant must use the “print()” function to output
values. Additionally, after using the PYTHOM tag, the

assistant must immediately use the EOS tag to interrupt the message and wait for the
system to return the execution result. In other

<PYTHON>code</PYTHON><EQS>

The assistant can use the following Python libraries: sympy, math, numpy.

words, it should be done as follows:
It is not necessary to solve problems analytically, and the use of brute force or
numerical methods with the PYTHON tag is also allowed.

</DEFINE>

EXxperiments

« Evaluate the method on two datasets.
« GSM8K dataset[1]: grade-school level math word problems.
« MATH dataset[2]: challenging competitive math problems.

Baselines
« Chain-of-Thought: without external tools.
* Program-aided Language Model [3]: without CoT & feedback.

| —

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2211.10435

N

w

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2211.10435

Results

« On the GSM8K data set, our method is slightly

Inferior to PAL. On the other hand, our method

GSMESK MATH
performs better on the MATH dataset. CoT 571 377
» Since most of the GSM8K problems can be PAL 79.8 47.5
answered correctly only with Python code, the CoT Ours 76.6 60.0

may have been rather a source of reasoning errors.

« Our method has the advantage in high-
difﬁCUlty problems. mCoT mPAL mLPML

20
IIIIIIlI-lll

Prealgebra Algebra Number Counting & Intermediate Precalculus
Theory Probability Algebra

15

1

o

92

o

Example 1: Mistake in CoT, corrected using Python.

Fuavie

system:

<PROBLEM>

What is the arithmetic mean of all of the positive two-digit integers with the property
that the integer is equal to the sum of its

first digit plus its second digit plus the product of its two digits?

</PROBLEM>

assistant:

CTHINK>

Let's first try to understand the problem statement. We need to find the arithmetic
mean of all two-digit integers that satisfy the

Therefore, the answer is 54.
</ THINK »

<PYTHOM>
Let's verify the answer using Python code

Find all two-digit integers that satisfy the given condition
nums = []
for i in range(le, 168):
a, b = divmod(i, 18)
if 18*a + b == a + b + a*b:
nums . append (i)

Calculate the arithmetic mean
mean = sum{nums) / len{nums)

Output the answer
print(mean)
</PYTHOM>

system:

<OUTPUT ="PYTHON" >
59.0@

</OUTPUT>

assistant:
CTHIMK>

It seems like there is a discrepancy between the answer I calculated using the THIMNK

tag and the answer returned by the system using the PYTHON tag. Let me check my

calculations again.

The two-digit integers that satisfy the given condition are 19, 29,

9 such integers. Therefore, the arithmetic mean
of these integers is:
(19 + 29 + ... + 99) / 9 = (9/2)(19 + 99) / O = 59

So, my initial answer was incorrect. The correct answer is 59.

</THINK>

<ANSWER>

-2

E)s

There are

The arithmetic mean of all of the positive two-digit integers with the property that

the integer is equal to the sum of its first digit
plus its second digit plus the product of its two digits is 59.
</ANSMWER>

Example 2: Ignore system feedback.

system:

<PROBLEM:>

Compute

M Asum_{1 A\le j << i} \frac{1}{2~{i + j}},\]where the sum is taken over all positive
integers $i% and $j% such that $1 ‘\le j < i.%

</PROBLEM:>

assistant:
<THINK>
We can write out the first few terms of the sum to see if we can spot a pattern:

This is a geometric series with first term $\frac{1}{4}% and commcn ratio $‘frac{l}
{2},% so its sum is

VAfrac{\frac{1}{4}}{1 - “frac{1}{2}} = \boxed{\frac{1}{2}}.\]

</THINK>

<PYTHON >
sum = @
for 1 in range(2, 1@8):
for j in range(l, i):
sum += 1 / 2**(1 + j)
print(sum)
</PYTHON:

system:

<OUTPUT ="PY
8.33333333333333
</OUTPUT >

26 <- correct answer

assistant:
CTHIMK >

Our answer from the Python code is not the same as the answer we got from our previous

calculations. Let's try to figure out which one
is correct.

We can see that the sum we want to compute is

M Asum_{i = 2}"\infty ‘sum_{j = 1}~{i - 1} \frac{1}{2~{i + j}}.\]

We can switch the order of summation to get

A Asum_{j = 1}*\infty ‘sum {i = j + 1}™\infty \frac{1}{2~{i + j}}.\]
Then, we can evaluate the inner sum:

‘\begin{falign*}

‘\end{align*}

Thereftore, the answer from our Python code is incorrect, and the answer is
$\boxed{\frac{1}{4}}.%

</ THINK >

CANSWER >
The sum is $\boxed{‘\frac{1}{4}}.%
</ANSWER >

Example 3: Incorrect Python code, corrected by CoT

system:

<PROBLEM>

Evaluate $(-125)~{4/3}5%.
</PROBLEM>

assistant:
<PYTHOMN >
import math

print((-125)**(4/3))
</PYTHON >

system:

<OUTPUT ="PYTHON" »

(-312.500808820000817-541.26587736527387)

</OUTPUT >

assistant:

<THINK>

We want to evaluate $({-125)"{4/3}%. We can write this as $(-1)"{4/3} \cdot 125~{4/3}%.
Mow, $(-1}~{4/3} = ((-1)*2)~{2/3} = 1~{2/3} = 1%.

S0, we just need to evaluate $125~{4/3}%. We can write this as $(125~{1/3})"4%.

Using the fact that $12%

573§, we have $125°{1/3} = 5%.

Therefore, $(-125)"{4/3}
</THINK>

(-1)~{4/3} \cdot 125~{4/3} = 1 ‘cdot (5)"4 = \boxed{625}%.

4

<ANSHER>
$(-125)~{4/3} = \boxed{6251%.
</ BNSWER>

Conclusion

« Having LLM generate structured output enables seamless integration
between the LLM and external tools, control of the LLM, and helps the
LLM recognize mistakes.

« As a result, LLM's mathematical reasoning ability is enhanced, especially
on challenging problems.

« However, it is questionable whether LLMs are truly aware of their mistakes.

	スライド 1: Markup Language for Mathematical Reasoning with LLMs
	スライド 2: Large Language Models
	スライド 3: Mathematical reasoning with LLMs
	スライド 4: Dealing with inference errors of LLMs
	スライド 5: LLM with external Tools
	スライド 6: Goal: stable feedback loop between LLM and external tools for error self-correction
	スライド 7: Markup Language for interacting with LLMs
	スライド 8: Grammer of the markup language
	スライド 9: System overview
	スライド 10: Reasoning Flow
	スライド 11: OUTPUT tag priority instruction
	スライド 12: Example of Prompt
	スライド 13: Experiments
	スライド 14: Results
	スライド 15: Example 1: Mistake in CoT, corrected using Python.
	スライド 16: Example 2: Ignore system feedback.
	スライド 17: Example 3: Incorrect Python code, corrected by CoT
	スライド 18: Conclusion

