Machine-learned premise selection for Lean

Bartosz Piotrowski!, Ramon Fernandez Mir?, Edward Ayers3

1IDEAS NCBR
2University of Edinburgh
3Cogna.co

07/09/2023



Problem description

example : 2°(n + 1) *m =2 * 2°n * m := by {
-- What now ?

}

We just need to use the theorem that says that 2"+1 =2.2"
(pow_succ).

Or, even better, have the system prove it automatically.

Issues:
» mathlib has over 100k theorems.
» There are ways to search but they are very strict.



Solution

Turn this problem into a machine learning task where:
» Input: the theorem statement (featurized).

» Qutput: list of premises that appear in the proof.

Design principles:
1. Tight integration with the proof assistant.
2. Easy to use and install.
3. Lightweight and fast.

Data extraction, training, and prediction all happen in Lean.



Features

theorem le_of _pred_1t {mn: N} :predm<n—m<n:=...

We consider the syntax tree of the elaborated expressions:

Hypotheses Conclusion

LT.1t (<) LE.le (X)

A

Nat instLTNat pred n Nat instLENat m n

m

» Names: T:LE.le T:instLENat T:Nat H:Nat H:LT.1t H:instLTNat ...

> Bigrams: T:LE.le/instLENat T:LE.le/Nat H:LT.1t/Nat ...

> Trigrams: T:LE.le/Nat/instLENat H:LT.1t/Nat/instLTNat ...



Relevant premises

The proof is also an expression so, in principle, we could just
traverse it and keep track of all the premises found.

However, this results in a large number of simple facts and
autogenerated lemmas...

We apply three filters!:
» All (42k): remove premises automatically generated by Lean.
» Math (40k): remove premises from the core library, e.g. rfl.
» Source (21k): only keep lemmas explicitly written in the proof.

match m with
| 0 => le_of_1t
| m + 1 =>1id

Y1n brackets: number of theorems with non-empty premise lists after filtering



Random forest

Key idea: many (uncorrelated) decision trees + voting.

Our decision trees:
» Leaves hold a list of premises and a list of examples.
» Nodes consist of a simple rule checking if a feature appears.

» The output is a ranking of premises.

Tree 1 Tree 2 Tree n
N V4 N\
N\ /
/) \
[pL, p4, p5] [pL, p2, p3] [p1, p3, p4, p5]

l

[(p1, 3), (3, 2), (P4 2), (P5, 2), (P2, 1), -]



Random forest

A key difference with the usual approach is that we train it in an
online fashion, i.e. we update the model one example at a time. It
makes it easy to update the model as new theorems are proved.

The steps to add an example e to a tree are:
1. Follow the binary rules down to a leaf L.
2. Let L= LU{e}. If split(L), continue, else stop.

3. Select N features by successively taking random pairs of
examples in L and picking a feature in their difference set.

4. The new rule f is the feature maximizing “information gain”.
5. Split L based on f into L; and Ly and let L = (f, Ly, Lp).



Evaluation and results

Split training and test sets based on mathlib modules:
» Test (592): Modules that are not dependencies.
» Training (2436): The rest of the modules.

Assume a theorem T depends on a set P of n premises. We
measure the quality of a ranking R as follows:

_ |PN{R[0],...,R[n— 1]}

Cover(T) : -

We also consider taking n+ 10 premises from R instead of n.



Evaluation and results

Average cover for our model with different filters and features:

n n+b n+b+t

All 0.56 (0.67) 0.57 (0.67) 0.47 (0.58)
Source 0.28 (0.36) 0.29 (0.36) 0.28 (0.36)
Math 0.25(0.32) 0.26 (0.33) 0.16 (0.24)

Observations:
» More strict filters make the learning task harder.

» Fewer data points.
P It is “easy” to predict very common premises.

» Trigrams caused over-fitting.



The suggest premises tactic

It can be invoked in tactic mode, producing suggestions instantly.

oo TacticTest.lean — lean-premise-selection DB @ os
TacticTest.lean 4, M san/@ %) B <O ® @0 e - Lean Infoview X
1mport natni1o .
‘ ¥ Tactic state
import Mathlib.Algebra.Group.Defs € vy
import PremiseSelection.Tactic 1: Type u
inport PremiseSelection.lidget L dnstt : RightCanceltonoid H
" ab: M
open PremiseSelection raxb=bea=1
» v Premise Selection

variable {M : Type u} [RightCancelMonoid M] {a b : M} u O Show failed suggestions.

example : b=a xbesa=1:= by @eq_conn @rw [eqcom] - b=axbea=1
" |t Leq_conn] @nul_left_eq_self ¥ apply mul_left_eq_self
sugglfst_premises eIff.intro @apply Iff.intror- axb=b—a=1

b finished checking 14 items



Conclusion

The code is publicly available at:

https://github.com/BartoszPiotrowski/lean-premise-selection

Things | omitted:
» We also used k-NN in a similar way.

» We experimented with premises from intermediate proof
states (we extracted them using Leanlnk).

Future work and questions:
» Re-train on fully ported mathlib.
> Better features exploiting the structure of expressions.
» Use our ML advisor with automated approaches, e.g., duper.
» Package for mathlib users?


https://github.com/BartoszPiotrowski/lean-premise-selection

