Inductive Logic Programming for
Interactive Theorem Proving

Liao Zhang

University of Innsbruck,

Czech Technical University

September 7, 2023

1/14

Motiviation

AITP has many challenges:

® bad at incremental learning
® poor explainability

® very large action space

® bad at planning

® |ow accuracy

[]

Only statistical ML is applied for TP.
| feel statistical ML is not enough for TP.

Could we combine a very different ML technique called inductive logic programming
(ILP) with statistical ML to develop stronger ML for TP?

Use ILP to predict tactics for Coq.

2/14

ILP

e A subfield of symbolic artificial intelligence

® Goal: induce hypotheses that generalize training examples with background
knowledge.

® Represented by first- or higher-order logic

Background Knowledge R LVET

mathematician(alice), mathematician(bob), :]\Ia:pa}\lt(iavl::eE)xam les
artist(clark), artist(david), hapgpy(bob) hap::y(clark)
use_itp(alice), use_itp(clark), use_itp(david) happy(david,) '

® Hypothesis: happy(X) :- mathematician(X), use_itp(X)

® |Interpretation: forall X, if X is a mathematician and uses ITP, he is happy.

3/14

Aleph

Positive Example

Background Knowledge Sermlalhe)
mathematician(alice), mathematician(bob), N;pa}\/tive Exambles

artist(clark), artist(david), hapgpy(bob) hap[r:y(clark)
use_itp(alice), use_itp(clark), use_itp(david) happy(david,) '

® Arguably the most influential ILP system
e \With appropriate parameters, we make Aleph roughly work as below.

® score = pos - neg

pos=1, neg=1, score =0 pos = 0, neg = 2, score = -2 pos = 1, neg = 2, score =-1

pos=1,neg=0,score=1

pos=1 neg=1, score=0 pos = 0, neg =0, score =0

4/14

Encoding 1

n : nat
i : nat
H:1i<n

HO : V n : nat, fact (S n) = S n *x fact n
Hi :n-i=8 (n-8S i)

i<n

Every node in the abstract syntax tree (AST) is converted to a fact.

The encoding of the goal:

coq_Init_Peano_1t(57,[0]). goal_coq_var(57,"i",[0,0]).
goal_coq_var(57,"n", [0,1]).

57: the id of the proof state
[0,1]: the position of the node in the AST
® i: the name of the hypothesis that the node refers to

5/14

Encoding 2

n : nat
i : nat
H:i<n

HO : V n : nat, fact (S n) = S n *x fact n
H :n-1i=8 (n-8S8 i)

i<n

The encoding of H:

coq_Init_Peano_1t(57, "coq_H",["coq_H",hyp_ass,0]).
hyp_coq_var(57, "i", "coq_H",["coq_H",hyp_ass,0,0]).
hyp_coq_var (57, "n", "coq_H",["coq_H",hyp_ass,0,1]).

® coq_H: the hypothesis that the node belongs to

[“coq-H", hyp_ass, 0, 1]: the position of the node in the hypothesis

® The texts “coq_H" and hyp_ass are used to distinguish the position of a hypothesis
from the position of a goal.

6/14

Predicates

dif (HypNamel, HypName?2).

dif (HypPositionl, HypPosition2).

dif (GoalPositionl, GoalPosition2).

left (HypPositionl, HypPosition2).

left (GoalPositionl, GoalPosition2).

above (HypPositionl, HypPosition2).

above(GoalPositionl, GoalPosition2).

/% Two subterms rooted at HypPositionl and HypPosition2 are equal.
eq_subterm(ProofStateld, HypPositionl, HypPosition2).
eq_subterm(ProofStateld, GoalPositionl, GoalPosition2).
eq_subterm(ProofStateId, HypPosition, GoalPosition).
hyp_coq_var (ProofStateId, HypName, HypName, HypPosition).
goal_coq_var(ProofStateld, HypName, GoalPosition).

7/14

Example 1

n : nat
i : nat
H:1i<n

HO : V n : nat, fact (S n) = S n * fact n
Hi :n-i=8 (n -8 i)

i<n

tac(A,"assumption") :-
coq_Init_Peano_1t(A,B), coq_Init_Peano_1t(A,C,D), eq_subterm(A,B,D).

8/14

Example 2

Hl : i <=N

tac(A,"simpl") :-
coq_Init_Peano_le(A,B,C), coq_Init_Datatypes_0(A,D),
coq_Reals_Rpow_def_pow(A,E), position_above(E,D),
coq_Init_Datatypes_S(A,F), position_above(F,D).

9/14

Example 3

® Sometimes we can learn complicated structures.
® But the structures may not correspond to the rules in Coq users’ minds.

® Simplify the power of one to the multiplication of one.

x : R

y : R

n : nat

Hrecn : (x + y) ~ n = sum_f_RO

(fun i : nat == Cni*x ~i*xy "~ (n-1i)) n

tac(A,"simpl") :-
coq_Init_Datatypes_0(A,B), coq_Reals_Rdefinitions_RbaseSymbolsImpl_Rplus(4,C),

coq_Reals_Rpow_def_pow(A,D), position_above(D,C), coq_Init_Datatypes_S(A,E),

coq_Reals_Rdefinitions_RbaseSymbolsImpl_Rplus(A,F), dif(F,C).
10/14

Compared to Statistical ML

® |LP can represent relations:
® horizontal relation and vertical relation
® Features used in existing systems are only AST walks up to certain lengths.
® equality
® reference: a node and the hypothesis that it refers to
® |LP can characterize tactics.

® |LP is more explainable.

11/14

Connecting to Statistical ML

® The k-nearest neighbors classifier
® The k-NN classifier ranks tactics by the distance measurement.
® jacard(fi,) = ffllr&% where f; is a set of features
® Train ILP
® tactic t
positive examples: proof states applied with t.

[]
® negative examples: proof states that are not applied with t.
® Use ILP to generate many rules for each tactic.

® Testing
® Use k-NN to predict 10 tactics ti, .., tjo for a proof state.
Vt;, if t; does not satisfy any rule generated by ILP, add it to bad.
Else, add it to good.
Return good + bad

12/14

Results

® Train k-NN and ILP in 10% data from the Coq standard library.
® Test the performance in another 10%.

35.0

32.54

30.0 A

27.5

R 25.04

22.5

20.0 4

17.59

—— ILP + kNN
kNN

T
4
top-k accuracy

6

13/14

The End

