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Some aspects of the 
“Feynman on AI” chapter

• Back-story: lunchtime student+TA discussions with RPF 
in the early to mid-1980s, often including EM, MD


• in which RPF evinced an interest in a machine learning 
approach to AI, with a progressive sequence of tasks


• [EM, Feynman on Artificial Intelligence and Machine 
Learning.] - my considered version


• Includes tutorial derivations omitted here

[EM, Feynman on Artificial Intelligence and Machine Learning. 

Feynman Lectures on Computation: Anniversary Edition; arXiv:2209.00083 ]

https://arxiv.org/abs/2209.00083


Symbolic algebraic expressions: 
Key to new computing paradigms, 

and a hidden currency of ML
• Gibbs-Bogolubov-Feynman variational method


• 


• Hopfield neural network


• ,           .


•   =>  activation  .


• Generalized to multiway 0/1 choice:    =>  softmax   .


• Boltzmann Machine     ; learn by minimizing KL divergence to external p(s).


• Quantum computer, per Feynman   .


• Transformer neural network: Inner softmax 

F ≤ ⟨H⟩0 − TS0

F ≤ EMFT[v] ≡ −
1
2 ∑

i≠j

Tijvivj − ∑
i

hivi + ∑
i

φ(vi) vi ≡ ⟨si⟩0 ∈ {0,1}

φ(v) =
1
β (v log v + (1 − v)log(1 − v)) = − TSMFT[v] vi = tanh[β(ui = ∑

j

Tijvj + hi)]
φ([vi ⋆]) =

1
β ∑a

via log via = − TS̃[v] via = eβuia/ ∑
b

eβuib

HIsing[s] ≡ −
1
2 ∑

i≠j

Tijsisj − ∑
i

hisi

H =
k−1

∑
i=0

q*i+1qiAi+1

via = eβuia/ ∑
b

eβuib

[EM, Feynman on Artificial Intelligence and Machine Learning. 

Feynman Lectures on Computation: Anniversary Edition; arXiv:2209.00083 ]

https://arxiv.org/abs/2209.00083


Symbolic vs. Neural AI
• Feynman lunchtime discussions, early 1980s: 


• G. Sussman (Minsky colleague) vs. (ideas of) J. Hopfield


• Feynman expressed a NN research program


• Symbolic was ascendant, but experiencing AI winter


• Now reversed:


• Last 10-15 years: AAAI dominated by ML/neural networks


• Future: Hegelian Synthesis?
[EM, Feynman on Artificial Intelligence and Machine Learning. 

Feynman Lectures on Computation: Anniversary Edition; arXiv:2209.00083 ]

https://arxiv.org/abs/2209.00083


Quoting my own best-effort 
text …

• “What would Feynman have thought of all all these advances? Remembering his 
commitment to having a personal, independent point of view on everything, and the 
impossibility of emulating a great mind, there can be little certainty on this point. 
Nevertheless it seems to me that: …”

• “3. He would be enthusiastic about transfer learning, and about the particular 
neural architectures that have led to success in vision, natural language, and limited 
combinations thereof. These methods have essentially achieved the goals of the 
machine learning project that he had in mind - insofar as he had expressed them.”

• “4. Regarding equations as the hidden currency of learning architecture, he might 
be of two minds: attracted because he was a mathematical master; repelled because 
the source of his mastery was the ability to deeply visualize the meaning of each 
equation. Neural network equations for the most part are just not that conceptually 
deep. In the old AI dichotomy of “scruffy” vs. “neat” research approaches, ML 
equations might be neat but not neat enough.”
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[EM, Feynman on Artificial Intelligence and Machine Learning. 

Feynman Lectures on Computation: Anniversary Edition; arXiv:2209.00083 ]

https://arxiv.org/abs/2209.00083


Quoting my own best-effort 
text …

• “What would Feynman have thought of all all these advances?  …” <…Caveats! …>

• “6. He might nevertheless be intrigued by conceptually deeper, less ad hoc 
architectures that connect to physics, such as manifold learning (clearly related to 
general relativity), and perhaps by attempts to connect neural networks to real 
neurobiology.”

• “8. Because of his deep commitment to physics, Feynman would be quite interested 
in - if also a bit skeptical of - the “physics-informed machine learning” agenda 
which is now being pursued with many different architectures, representations, and 
methods for the purpose of doing computational physics, chemistry, and biology. If I 
had to pick one thing about present-day neural networks, machine learning, and AI 
that Richard Feynman would be most interested in, this would be it.”

• 9. He would certainly have creative and potentially powerful new ideas that are not 
yet on anybody’s list or agenda.”

PIM
L
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[EM, Feynman on Artificial Intelligence and Machine Learning. 

Feynman Lectures on Computation: Anniversary Edition; arXiv:2209.00083 ]

https://arxiv.org/abs/2209.00083


AITP for Science: 
some logic in favor

• “AI”: Reliable AI for Science:


• Representationalism 1st, ML 2nd. (On top vs. on tap)


• formal, symbolic DSLs for modeling …


• applicable math, sci content, algorithms (model sim, ML, analysis)


• “TP”: verify exact and approximate maps between such languages


• e.g. dynamics to simulation algs: XDEs, Markov jump 
processes, hybrids e.g. dynamical grammars 

• high-level support for scientific knowledge representation
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[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]
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AITP for Science: 
some logic in favor

• “AI”: Reliable AI for Science:


• Representationalism 1st, ML 2nd. (ML on tap, not on top)


• formal, symbolic DSLs for modeling …


• applicable math, sci content, algorithms (model sim, ML, analysis)


• “TP”: verify exact and approximate maps between such languages


• e.g. dynamics to simulation algs: XDEs, Markov jump 
processes, hybrids e.g. dynamical grammars 

• high-level support for scientific knowledge representation



Some scientific  
simulation paradigms

• Partial differential equations (PDEs)


• central to PIML so far


• Stochastic models


• kinetic theory in physics


• well-motivated in biology



PDE verification?

• ODEs: Lorenz attractor [Immler 2017]


• Finite element method foundation: Lax-Milgram theorem 
on unique existence of FEM weak formulation solutions



UCI Morphodynamics

Master Equation Semantics

• RHS, LHS are multisets
• Founded on stochastic processes
• Dynamics from the Master Equation:  
• Create elementary processes from yet more elementary “Basis operators”

– Term creation/annihilation operators: for each param value,

 
– Obeying Heisenberg operator algebra

– Yet classical, not quantum, probabilities

[Doi 1976; ... Mikhailov ’81; ...Mattis & Glasser ’98; ... 
EM+GY Annals of Math. and A. I., 47(3-4), January 2007]

€ 

dp
dt

= ( Wr
processes,r
∑ ) ⋅p



UCI ICS IGB SISL

CPIB Auxin Transport 5/15/08

Example: 
• Operator:
• Spectrum:

• EV’s with boundary layer approximation:

[Mjolsness and Prasad, J. Chem Phys. 2013]

Prlambda(nC)



Operator algebra for 
Pure stochastic chemical reactions
• For reaction/rule r:

• For reaction/rules r1 and r2:

Ŵ{m(r)
i }→{n(r)

i } = k(r)∏
i

( ̂ai)n(r)
i (ai)m(r)

i

nα ∈ ℕ : [aα, ̂aβ] = δαβI , i . e .
aα ̂aβ = ̂aβaα + δαβIα

nα ∈ {0,1} : aα ̂aβ = (1 − δαβ) ̂aβaα + δαβZα

where (n)l ≡ {n!/(n − l)! for l ≤ n;
0 otherwise .

Why: ∂m
x (xnf(x)) = binomial sum

Ψ

(+ Weyl algebra)



UCI Morphodynamics

Generation of valid algorithms
• Compute or sample exp t H ; e.g. Euler’s formula

• Approximate: Trotter Product formula (interleaving):

• Time-ordered product expansion (TOPE) - convergent Dyson series :

– can be used recursively !
– restate with time-ordering:

• Diagonal/off-diagonal split: obtain Gillespie’s Stochastic Simulation Algorithm (SSA)

[Annals of Math. and A. I., 47(3-4), January 2007]

[Physical Biology 10, 2013]



TOPE and Feynman diagrams
Time-Ordered Product Expansion

[Physical Biology 10, 2013]



Time-Ordered Product Expansion 
(TOPE) verification? 1/2

• “Big operator” 
derivation

• formal power series, 
changes of variable, 
induction on dimension

• notation “represents” 
permutation symmetries

17
[EM+GY Annals of Math. and A. I., 47(3-4), January 2007]
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3.3Proof Outline:
TOPE,

 line 3 => 4,  
1/2



Human Justification 
for 3.3, ~ the 

Distributive Law for
Big Operators

19



Machine justification for 3.3?

• In Coq: [Bertot et al, “Canonical Big Operators”, TPHOLs 2008]

• In Lean 4: Mathlib.Algebra.BigOperators.Ring (?)

theorem Finset.prod_sum {α : Type u} {β : Type v} [inst : CommSemiring β] {δ : α → Type u_1} [inst : DecidableEq α] 
[inst : (a : α) → DecidableEq (δ a)] {s : Finset α} {t : (a : α) → Finset (δ a)} {f : (a : α) → δ a → β} :
(Finset.prod s fun a => Finset.sum (t a) fun b => f a b) =   Finset.sum (Finset.pi s t) fun p => Finset.prod (Finset.attach s) 
fun x => f (↑x) (p ↑x (_ : ↑x ∈ s))

The product over a sum can be written as a sum over the product of sets, Finset.Pi.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Ring.html#Finset.prod_sum

20

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Ring.html#Finset.prod_sum
https://leanprover-community.github.io/mathlib4_docs/foundational_types.html
https://leanprover-community.github.io/mathlib4_docs/foundational_types.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Ring/Defs.html#CommSemiring
https://leanprover-community.github.io/mathlib4_docs/foundational_types.html
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#DecidableEq
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#DecidableEq
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Finset/Basic.html#Finset
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Finset/Basic.html#Finset
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Basic.html#Finset.prod
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Basic.html#Finset.sum
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Eq
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Basic.html#Finset.sum
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Finset/Pi.html#Finset.pi
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Basic.html#Finset.prod
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Finset/Basic.html#Finset.attach
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Membership.mem
https://urldefense.com/v3/__https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/BigOperators/Ring.html*Finset.prod_sum__;Iw!!CzAuKJ42GuquVTTmVmPViYEvSg!IYxHMKETKJ84eKcvhh4-GG3ZWKKyUzupdjZ-yqJY3F2tiLce9k2bgPxLrls1bskg7SsAhZ2PZw$
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Proof Outline:
TOPE,

 line 3 => 4,  
2/2



Time-Ordered Product Expansion 
(TOPE) verification? 2/2

• “Big operator” 
derivation

• formal power series, 
changes of variable, 
induction on dimension

• notation “represents” 
permutation symmetries

22
[EM+GY Annals of Math. and A. I., 47(3-4), January 2007]
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UCI Morphodynamics

Learning in stochastic 
reaction networks

• MCMC  [Yosiphon thesis 2009]:

• DD for SDE version [Johnson thesis 2012]:

• TOPE method
• [Wang et al., BMC Systems Biology 2010]:



UCI Morphodynamics

Stochastic Simulation
• SSA:

• Exact R-leap:

[with Orendorff, Chatelain, Koumoutsakos - J. Chem. Phys. 2009]



UCI ICS CCM

Rejection Sampling 
(in general)

Q-Bio 08/08



UCI ICS CCM

Accelerated Rejection Sampling 
~ “Squeeze method” [Marsaglia 1961]

• Then Accept(x) is a mixture:

• and we have the generic pseudocode algorithm:



AITP for Science: 
some logic in favor

• “AI”: Reliable AI for Science:


• Representationalism 1st, ML 2nd. (On top vs. on tap)


• formal, symbolic DSLs for modeling …


• applicable math, sci content, algorithms (model sim, ML, analysis)


• “TP”: verify exact and approximate maps between such languages


• e.g. dynamics to simulation algs: XDEs, Markov jump 
processes, hybrids e.g. dynamical grammars 

• high-level support for scientific knowledge representation



UCI Morphodynamics

Variable-binding via 
operator integration

• Parameterized grammar rules:
• Parameterized grammar rule operators:

• So, object parameters need measure spaces

[Annals of Math. and A. I., 47(3-4), January 2007]



Particle to Structure Dynamics
• Particle reactions/transitions, with params

• Labelled graph (structure) transitions

•

W

(and can integrate ODE rules too)

Ψ



Particle to Structure Dynamics
• Particle reactions/transitions, with params

• Labelled graph (structure) transitions

•

W

[EM, MFPS Proc., ENTCS 2010]

(and can integrate ODE rules too)

(and can integrate ODE rules too)

∝

Ψ



Algebra of Labelled-Graph 
Rewrite Rules

G1;2 in
nodes = Gr1 in

nodes
·∪ (Gr2 in

nodes∖H̃nodes) G1;2 out
nodes = Gr2 out

nodes
·∪ (Gr1 out

nodes∖Hnodes)

G1;2 in
links = Gr1 in

links ∪ h−1⋆(Gr2 in
links∖H̃links) G1;2 out

links = Gr2 out
links ∪ h⋆(Gr1 out

links ∖Hlinks)

Ka = Gra in
nodes ∩ Gra out

nodes

K1;2 = (K1∖Hnodes ∪ h−1(K2∖H̃nodes) ∪ (K1 ∩ h−1⋆(K2))

Ψ

[ EM, http://arxiv.org/abs/1909.04118]

Verifying this result by machine would be 
both valuable, and a big challenge.
It was the longest, trickiest calculation I’ve ever done by hand.
Possibly we need an easier hand-verification first.

http://arxiv.org/abs/1909.04118


Point of maximum 
intermediate expression swell

[ EM, http://arxiv.org/abs/1909.04118]

http://arxiv.org/abs/1909.04118


Algebra of Labelled-Graph 
Rewrite Rules: ODE case

Ψ

Commutator of GG & ODE rules: 
[WODE (2), ŴSPG (1)] =

1
C1(Nmax free) ∑

h:H→H̃
∫ dμ(1)h(Xh⊥) %

∫ dzh∥ ∫ dx∫ dy ρ2(y, x)

× {ρ1(zh∥ = x, Xh⊥)ŴG1;2 in(H̃,x,zh⊥)→
h

G1;2 out(H,y,zh⊥)

−ρ1(zh∥ = y, Xh⊥)ŴG2;1 in(H̃,x,zh⊥)→
h

G2;1 out(H,y,zh⊥)} ,

Commutator of ODE & ODE rules: 
v[2 , 1](x) = (v1 ⋅ gradx)v2(x) − (v2 ⋅ gradx)v1(x)

Operator for ODE rules: 
WODE 2 = ŴODE 2 = ∫ dxdy ρ2(y, x) ∑

⟨i1,…ik⟩≠

̂ai1,…ik(G
(2)(y))ai1,…ik(G

(2)(x))  , where

ρ2(y, x) = −grady ⋅ (v(y)δ(y − x)) = − ∑
a

gradya
(va(y)∏

b

δ(y − x)) .

-3 -2 -1 0 1 2 3
y - x

[ EM, Front. Syst. Biol., 09 September 2022, Proposition 1]





UCI Morphodynamics

Synapse morphodynamics

T. Bartol (Salk), 
modified from:
[Hotulainen & 
Hoogenraad,
J. Cell Biology 
189, 2010] 

(And likewise for axons.)



E.g. actin cytoskeleton in 
synapse

• Branching rule - one of a dozen or so

Plenum DGG simulations: Matthew Hur

Earlier software: Guy Yosiphon and Arthur York



UCI Morphodynamics

Dendritic spine head DGG Rules

Actin Network Biomechanics Rules

• Stochastic Angle Bending

• Pairwise Lennard-Jones Force

• Tri-Nodal Anisotropic Buckling

• Hessian Boltzmann Sampling

• Euler-Bernoulli Deflection

Spine Head Membrane Rules

• Area, Line Tension, & Helfrich Bending 
Energy

37



Biomechanical Rules
• Implement dynamics for combined energy

•
• where 

• E.g. (pretty-printed rules) :

Etot =
N

∑
ijk

Utri-nodal(xi, xj, xk)

Anisotropic Buckling

+ UH(xi, xj, xk)

Hessian Thermal Noise

+ ULJ-midpoint(x1, x2, x3)

Stochastic Midpoint Minimization

+ P
M

∑
ij

xiyj − yixj

2

Membrane Area

+ Ω
M

∑
ijk

| |xi − xj | |2 + | |xk − xj | |2

2

Membrane Length

+ 2κ
M

∑
hijkl

∂H2

∂xj
(xh, xi, xj, xk, xl)

Membrane Helfrich Curvature

UH(x1, x2, x3) =
1
2

(x2 − x1)T ∂2ULJ(x2, x1)
∂x2∂x1

(x2 − x1) +
1
2

(x2 − x3)T ∂2ULJ(x2, x3)
∂x2∂x3

(x2 − x3)



Plenum/Mathematica 
implementation

E.g.:
Rule for Hessian Thermal Noise
Boltzmann Sampling of Random Displacements for a Chain of 
Three Actins:



2D Actin Network
Network Remodeling Rules Reach Non-Zero Steady-State

• 0.06 fraction of actin are monomers at steady-state. Addition of membrane would increase this value making it consistent with 0.12 
reported in literature

• Average number of actins per branch is 7 in the simulation while it is 8 in the literature

Plenum DGG simulations: Matthew Hur

Earlier software: Guy Yosiphon and Arthur York



2D Actin Network with 
Membrane

Plenum DGG simulations: Matthew Hur

Earlier software: Guy Yosiphon and Arthur York

slower biomech rate

higher curvature penalty






MT fiber 
Stochastic Parametrized Graph Grammar

[Chakrabortty et al.
Current Biology 2018] 

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]



Large-scale simulation
Dynamical graph grammar

…

To infer: L, Ldiv, θcrit,  params for ρbundle, ρgrow

[Medwedeff and Mjolsness, Physical Biology, June 2023]



Parallel DGG algorithm: 
Simulated MT bundling, catastrophe

[Medwedeff and Mjolsness, Physical Biology, June 2023]



Cell Complex  
Operator Splitting

• Requires different c of the same d be well-separated. 

[Medwedeff and Mjolsness, Physical Biology, June 2023]



Expanded Cell Complex, for separation within dimension

[Medwedeff and Mjolsness, Physical Biology, June 2023]





MT MD model reduction

[C. Scott and EM, ML:ST 2020 = arXiv:2002.05842; 

cf. SIAM J Sci Comp 2019 = arXiv:1806.05703]

Train on:

LAAMPS simulations

ℛ



… Higher-order calculus!
Slides: Oliver Ernst, Salk O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ

·νk(x) = Fk[{νk}K
k=1]



51

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063



Computational problem

52

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ



Adjoint method BMLA-like
learning algorithm

53[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

ℛ



54

Learning

Reaction-

Di↵usion

Systems with

Spatial Dynamic

Boltzmann

Distributions

Oliver K. Ernst

Biochemistry at

Synapses

Model reduction

Dynamic

Boltzmann

Dists.

Spatial Dynamic

Boltzmann

Dists.

Lattice Systems

Future

27/27

What can analytic solutions help here?

Slides: Oliver Ernst, Salk

Spatial Dynamic Boltzmann 
Distributions

ℛ

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

Computer algebra

for basis functions:
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[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]
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Each language has:



“Eclectic Algebraic Type Theory” 
for mathematical type hierarchy

Topological categories go here,
in some order. Eg. [MFPS 2010]

✓

✓

✓

✓✓

✓ ✓-

Work in progress



Eclectic Types
Context: The previous bio modeling languages shown above have a well-developed semantics of 
scientific “processes” modeled mathematically, but not for extended science-modeling “objects” 
beyond parameter-labelled graphs (which however covers a lot). E.g. no manifolds, dynamic 
function spaces, etc.. Such semantics could also undergird machine-assisted proof of some of the 
“arrows” in the Tchicoma architecture, e.g. algorithm-generation. The hope was that type theory 
could help with all this. So far no great luck.

Goals: 
1. Generalize (loosen) the idea of a single “universal” Cartesian Closed Category as the 
semantics of a type theory of mathematical objects, to allow many base categories in a 
progressive curriculum, or none, while licensing a rich collection of type constructor notations to 
the extent possible. So, “eclectic” about foundations and expressive notations.
2. Define larger units of organization in a “type hierarchy”, to allow for looser coordination in 
expert development.

Caveat: This is all in the service of automated tools for scientific modeling, so might be (even?) 
worse for other areas of mathematics.



Eclectic Types
Definition. An eclectic type  is a triple , subject to certain constraints, where  is a 
content category whose category-objects are the mathematical objects of eclectic type ,  is a 
type object in a logical type category , and  is a language equivalent to the minimal subset of 
the internal language of  that includes  and all its predecessors in a partial ordering < on the 
objects of . The constraints on  and  are:

 (1) finite product types  in : [technical condition on  ] , and likewise for sums; &

 (2) function types in , , [technical condition on  ] .

The partial ordering relation < is related to definability <# within a type hierarchy as follows:

This way, required definitional statements can be made in the available sub-language  of each type.

Definition. A subtype  of an eclectic type  is an eclectic type that has both a 
[technical condition on  and  ] and a subtyping relationship  .
By the Liskov substitution principle, subtype relationships <: imply further such relationships among product types, sum types, and function 
types (“contravariantly” among the function argument types). This relationship contributes to generativity of the language fragment 
connected with an eclectic type in a type hierarchy. Likewise, the <# and hence < partial order relations must be consistent with product, 
sum, and function type constructors.

Definition. Assuming these kinds of consistency relations among <:, <#, and <, then we have a 
type hierarchy.

t (Ct, τt, Lt) Ct
t τt

A Lt
A τt

A Ct τt
τt = ∏

p

τσp
A Ct

A τf = τx → τt Cf

<# ⟹ < i.e. ∀a, b (a <# b ⟹ a < b)
Lt

(Cs, τs, Ls) (Ct, τt, Lt)
Cs Ct τs <: τt



Eclectic Types
Definition. In general, <# and < are related not only by type constructor consistency, but also by 
refinement: . However,  <: need not be related to < by refinement. When it is, the 
preferred relation has the opposite sense:

  .
A subset of eclectic types, within a type hierarchy, that satisfies this relationship is called a type 
hierarchy module or where unambiguous a “type module”.

Definition. A curriculum is a type hierarchy together with a set-covering collection of type 
modules within the type hierarchy, that form a DAG and hence a partial order, under the quotient 
new-generalization relationship: (<# and <:)/modules .

Spiral development is a special case of a curriculum.

A type module is easily extensible, but only by further definition ( old <# new) and specialization (old :> new) which can of course be applied 
in combinatorial ways. Type hierarchy modules could be fruitful for symbolic AI search algorithms. When in the course of mathematical 
development new generalization supertypes are required, thus exceeding the limitations of a type module, the options are
    (1) to begin a new type module within an existing type hierarchy, preserving existing <# definitional type relationships while potentially 
also creating a “curriculum” of modules of increasing generalization content, or
    (2) to map the old type hierarchy into a new and more encompassing one, thus “restructuring” it. 
In this way three levels and timescales of mathematical type-elaboration activity naturally emerge: incremental exploitation within modules, 
development of new modules, and foundational restructuring.

<# ⟹ <

(:> ⟹ <# ⟹ < ) i.e. ∀a, b (a :> b ⟹ a <# b ⟹ a < b)



AITP for Science: 
some logic in favor

• “AI”: Reliable AI for Science:


• Representationalism 1st, ML 2nd. (On top vs. on tap)


• formal, symbolic DSLs for modeling …


• applicable math, sci content, algorithms (model sim, ML, analysis)


• “TP”: verify exact and approximate maps between such languages


• e.g. dynamics to simulation algs: XDEs, Markov jump 
processes, 

• high-level support for scientific knowledge representation







UCI Morphodynamics

Eg: Plant gene expression model 
Declarative, with cell growth & division

64
[Shapiro et al Frontiers
in Plant Science 2013]





Abstract

The complexity of biological systems (among others) makes demands on the complexity of the 
mathematical modeling enterprise that could be satisfied with mathematical artificial intelligence of 
both symbolic and numerical flavors. Technologies that I think will be fruitful in this regard include:
 
(1) the use of machine learning to bridge spatiotemporal scales, which I will illustrate with the 
“Dynamic Boltzmann Distribution” method for learning model reduction of stochastic spatial 
biochemical networks and the “Graph Prolongation Convolutional Network” approach to course-
graining the biophysics of microtubules; 

(2) a meta-language for stochastic spatial graph dynamics, “Dynamical Graph Grammars”, that 
can represent structure-changing processes including microtubule dynamics and that has an 
underlying combinatorial theory related to operator algebras; and 

(3) an integrative conceptual architecture of typed symbolic modeling languages and structure-
preserving maps between them, including model reduction and implementation maps.



Machine learning for model reduction 
incorporating stat mech knowledge: 
  
Dynamic Boltzmann Distributions for 
stochastic reaction-diffusion systems

Oliver Ernst, Salk & UCSD



Model Reduction
• For …

– understandability
– computational escalation

• Commutation:

• To reduce within the paradigm, we need …
– stochastic + deterministic dynamics
– dynamic particles, fields,  and graphs

Δt

Δt

ℛ

Ψℛ ≃ ℛΨ



UCI ICS CCM

Mapping: Model reduction

• Nonspatial: 
–Graph-Constrained Correlation Dynamics
–warmup case for …

• Spatial generalization:
–Dynamic Boltzmann distributions

Δt

Δt

ℛ

Ψℛ ≃ ℛΨ

[Johnson, Bartol, Sejnowski, and Mjolsness.  
Physical Biology 12:4, July 2015]

[Johnson, Bartol, Sejnowski, and Mjolsness.  
Physical Biology 12:4, July 2015]

Stat mech knowledge context for ML: 
Master eq. at fine scale 
Dynamic Boltzmann distributions at coarse scale



… Higher-order calculus!
Slides: Oliver Ernst, Salk O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ

·νk(x) = Fk[{νk}K
k=1]
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O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063



Computational problem

72

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ



Linearity of process operators

• Reason: Chain rule on MaxEnt optimal inverse 
statement

73

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

ℛ
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Learning

Reaction-

Di↵usion

Systems with

Spatial Dynamic

Boltzmann

Distributions

Oliver K. Ernst

Biochemistry at

Synapses

Model reduction

Dynamic

Boltzmann

Dists.

Spatial Dynamic

Boltzmann

Dists.

Lattice Systems

Future

27/27

What can analytic solutions help here?

Slides: Oliver Ernst, Salk

Spatial Dynamic Boltzmann 
Distributions

ℛ

O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

Computer algebra

for basis functions:



Adjoint method BMLA-like
learning algorithm

75[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

ℛ



Benefit of Hidden Units
Network: fratricide + lattice diffusion

ℛ

[Ernst, Bartol, Sejnowski, Mjolsness, arXiv:1808.08630 v2 April 2019]



Benefit of Hidden Units
Network: fratricide + lattice diffusion

MSE of 3rd order stats

• Learned DBD ODE RHS, without and with hidden units

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]

ℛ



Rössler Oscillator in 3D
• Learned DBD ODE RHS:• Function:

[Ernst, Bartol, Sejnowski, Mjolsness, arXiv:1808.08630 v2 April 2019]



Graph Prolongation Convolutional 
Networks  
for biomechanical model reduction  
from molecular dynamics

Cory Scott



UCI Morphodynamics
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Graph Lineage Definitions
• Hierarchical Graph Sequence: a mapping from ℕ into some sequence of graphs which 

obeys the following:  
• G0 is the graph with one vertex and one loop on that vertex 
• Edge and vertex cardinality of graphs in the sequence grow at most “exponentially” in some base, b:                                                     

.  
 

 

• Graded Graph: G is a graded graph if all of the vertices of G are labeled with non-
negative integers such that if (v1 , v2) is an edge, the labels of v1 and v2 differ by at most 1. 

 

 

• Graph Lineage: a graded graph where the sequence of ΔL = 0 subgraphs is a HGS and the 
subgraphs with ΔL = 1 are a HGS of bipartite graphs. The above is a graph lineage of path 
graphs of length 2n. 

• Hierarchitecture: A graph lineage, used as a model architecture.



Generating Graph Lineages
• One way to generate a graph lineage (or more generally, graded 

graphs) is via local graph rewrite rules. 
 

• Rules can be applied locally, or to all cells in a graph 
simultaneously: 

• Graph labels suppressed, but necessary 
• More: 

Local Firing Global Firing



Multiscale numerics:  
Alg. Multigrid Methods for Graphs

W′ ≃ PTWP

E.g. in optimization-based neural networks.

[EM et al., IEEE Trans. Neural Networks 1991]

Cf.  for graph-matching [Gold et al. Neural Computation 8 1996]MG′ ≃ GM

Here: use graph Laplacian , or  with orthogonal L′ ≃ PTLP PL′ ≃ LP PTP = I
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Define Graph Process
Directed “Distances”

• Definition requires constrained opt of diffusion operator:

• Constraints: orthogonality; sparsity?

• Optimize time & time dilation due to graph size:

• Can obtain P at early times (“rigid” vs “flexible” def of D):

• △≤  provable with weaker α :

:
restriction.prolongation

;

[C. Scott and EM, http://arxiv.org/abs/1909.04203]

http://arxiv.org/abs/1909.04203


MT MD model reduction

[C. Scott and EM, ML:ST 2020 = arXiv:2002.05842; 

cf. SIAM J Sci Comp 2019 = arXiv:1806.05703]

Train on:

LAAMPS simulations

ℛ


