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Ádám Fraknói1 András Kornai2 Zsolt Zombori3,1
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Semantically meaningful embeddings1 Motivation

• Entities with similar meaning should be embedded close to each other (this workswell in natural text)
• Formal languages seem more difficult than natural language

— How well can the meaning of a sentence be approximated by that of its constituentwords?E.g. ”The weather is wonderful today” vs. ”3 ∗ (6 − 2) = 24/2”— Just as in natural language, many words are ambiguous in formal languageE.g. digit 2 can mean two, twenty, two hundred etc.
• Theorem provers implicly create vector embeddings for mathematical objects
• Not known how well such embeddings capture the theory’s semantics
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Previous works1 Motivation

• Recognize the importance of a good embedding, but
• Focus on performance on downstream tasks
• Do not analyse the structure of the emerging representation (embedding)
• Do not analyze how these are learned

Example: [Parsert et al., 2020]
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Our goal1 Motivation
• Analyze the power of representations
• Understand simple tasks before moving to complicated ones
• Vision: embed logical formulas in ways that represent their semantics well
• Current work: understanding the pattern of atoms

1. How should a good embedding for atoms of a theory should look like?2. What embeddings current systems can do?3. How can we create a good embedding?
• Using only NLP methods

— Distally motivated by AI safety concerns [Kornai et al., 2023]— Considering language modeling tasks— Taking embeddings directly from NLP
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Datasets2 Embeddings results
Expression examples:

467 + 594 = 061

((383 + 269)/((1 ∗ 1) ∗ (642 − 641))) = ((571/(391/391)) + 81)

((3A8B3C + 2A6B9C)/((1C ∗ 1C) ∗ (6A4B2C − 6A4B1C))) =

((5A7B1C/(3A9B1C/3A9B1C)) + 8B1C)
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Line pattern for digits2 Embeddings results

Figure: Word2vec embedding from 0 to 9 Figure: RoBERTa embedding from 0 to 9
We do not know the reason for the line pattern yet.
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Further research2 Embeddings results

• Grid pattern: numbers align in a grid as changing different digits
• Line pattern: numbers from 0-999 align in a line
• Value metric: Is emb(A + B) close to emb(C), where A + B = C

• What happens with variables?
• etc.
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How does a transformer learn to add two numbers?3 Representation matters

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. ICLR 2023 [Nanda et al., 2023]
• Train a 1-layer, attention only transformer to perform modulo k addition (k=113)
• Reverse engineer the algorithm learned by the model
• Identify key phases of the learning process:

1. memorization (does not generalise)2. circuit formation (does generalise)3. cleanup (get rid of the stuff that does not generalise)How does learning depend on the representation of the input?
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How does a transformer learn to add two numbers?Onehot encoding
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Memorizing training samples is quick, generalisation comes with significant delay.This encoding is very prone to overfitting.
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How does a transformer learn to add two numbers?Unary encoding
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Memorizing training samples is a bit bumpier. No delay in generalisation. Signficantgeneralisation gap.This encoding supports generalisation much better.
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How does a transformer learn to add two numbers?Onecold encoding (1-onehot)
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Learning fails, even for the training set.This encoding makes inputs very similar in vector space. We loose sparsity.
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How does a transformer learn to add two numbers?Binary encoding
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Perfect, immediate learning. The input representation makes generalisation easy.This encoding presents the inputs in a spectral form. The original paper claims that suchspectral form is learned by the embedding matrix.
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How does a transformer learn to add two numbers?Word2vec encoding
Dim Train acc Test acc Dim Train acc Test acc
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Performance higly depends on the embedding dimension.For more complex downstream tasks, learned embeddings likely provide a big boost.
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Thank you for your attention!
Q&A
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