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LISA is a theorem prover implemented in Scala based on Tarski-Grothendieck (TG) set theory (foun-
dations similar to those of Mizar [23] and higher-order encoding of TG in Isabelle/HOL [7]). Since our
first announcement [11], we have developed a domain-specific proof language and a core library [12,13],
including transfinite recursion. LISA proofs are Scala programs whose execution generates sequent cal-
culus proof sequences checked by the LISA kernel [12, 13]. Proof construction can use all features of
Scala to prove theorems from previously proven theorems, axioms, and conservative definitions. We
present applications and planned developments of LISA. This includes an embedding of HOL to enable
use of HOL provers and libraries, reasoning about programs using the Eldarica Horn clause solver and
the Stainless Scala verifier, as well as using LISA for checked proofs in functional programming courses.

Embeddings of HOL in set theory, using HOL solvers We plan to develop an embedding of Higher-
Order Logic and type theory in LISA’s set theory. In set theory, a function with domain and range
sets 𝐴 and 𝐵 is represented as a subset of their Cartesian product 𝐴 × 𝐵 encoding the graph of the
function [18, 20]. Thus, function spaces 𝐴 → 𝐵 are sets, denoted 𝐵𝐴. This yields a natural embedding
of classical HOL functions. The type of HOL individuals is interpreted as an infinite set, and Boolean
type becomes the ordinal 2 = {0, 1}. Predicates over a set 𝐴 become the characteristic functions 2𝐴,
and logical connectives functions taking elements of 2 and returning an element of 2. The ∀ quantifier
reduces to equality, ∀𝑥 ∈ 𝐴.𝑃 (𝑥) ∶= ((𝜆𝑥 ∈ 𝐴.𝑃 (𝑥)) =𝑇 (𝜆𝑥 ∈ 𝐴.True)) with =𝑇 the characteristic
function of {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝑇 } over 𝑇 × 𝑇 , here used with 𝑇 = 2𝐴.

We plan to use this encoding in two ways. First, we will use automated higher-order theorem provers
to prove statements whose subterms have bounded domains. The provers we are considering include
LEO-III [32] (also implemented in Scala), Lash [8], Zipperposition [4], and new versions of E [33].
Because the deduction rules of HOL are provable within set theory, it is then possible to recover the proof
within LISA. Second, we will explore importing proofs and theories from HOL4 [31], HOL Light [15],
and Isabelle/HOL [25] into LISA, which will help in bootstrapping our library.

As in HOL, the restriction of set theory statements to functions and predicates whose domains are
proper sets imposes a type structure of simply typed lambda calculus, for which there are efficient type
checking and inference algorithms. This will provide the basis for a soft-type system over set theory.
Further down the line, we will explore the encoding of dependent types using dependent function spaces
(products) in set theory. Combined with induction principles (which we have recently derived in LISA
using conventional transfinite induction), and universes (whose existence is implied by large cardinals
in LISA’s Tarski-Grothendieck set theory), we expect [34] to be in a position to enable interoperability
with type theoretic libraries such as Lean’s standard library [9] and, for example, Coqtail [2] for Coq.

Combining LISA, Stainless and Eldarica to reason about programs Verifying safety and termina-
tion properties of (higher-order) programs has been a long-standing problem, and is one of the intended
application domains of LISA. There remain significant challenges in making full functional verification
of these programs tractable. One approach for solving this problem is to use program verifiers, such
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as the Stainless tool developed in our group [1, 14]. Stainless allows a programmer to work in Scala
and specify functional contracts within the source language. Stainless relies on converting the code and
contracts to SMT formulas and passing them to external solvers, providing support for a large subset
of functional and imperative Scala code. Stainless is supported by formally verified foundations [14],
but has several limitations. First, the implementation relies on external SMT solvers without checking
their result, which can be problematic [26] and limits the trustworthiness. Second, Stainless does not
automatically infer inductive invariants for safety verification. Third, when an automated proof attempt
fails, the abilities to provide proof hints are limited. To address all these limitations, we plan to convert
Stainless programs to Constrained Horn Clauses (CHCs) and construct end-to-end formally checked
proofs for properties of CHCs. CHCs naturally express program flow, and have seen extensive use in
program verification [6,29]. We will define the semantics of CHCs in LISA and prove generic properties
about such systems, which may be used during automated and manual verification. We will use Scala
as a user-friendly language for specification of programs and algorithms, and use Stainless to generate
CHCs to be verified. We view the correctness of the transformation from a complex language to CHCs
as a separate verified compilation problem, similar to that of CakeML [19], [35]. We intend to use the
Eldarica CHC solver [16, 30] based on Princess [28] to aid solving of CHCs.

The resulting proofs (both for Horn clause solving of Eldarica and for constraint reasoning of Princess)
will be checked by the LISA kernel. In cases where automated verification fails, LISA will enable users
to construct semi-manual proofs about CHCs, using tactics and the proof DSL. We believe these devel-
opments will greatly increase the automation and the scope of applicability of reasoning about programs.

LISA’s potential in education Automated theorem proving is increasingly finding its way in edu-
cation, both for mathematics and computer science programs [3]. Proof assistants are used not only
in graduate courses [17, 24, 27] but also in undergraduate courses [21] and high schools [5, 10]. With
LISA, we aim to go one step further, proposing the use of proof assistants for introductory programming
courses. We have successfully developed methods to automatically and formally verify correctness of
student code with respect to a given reference solution [22] using Stainless. In functional programming
courses, students typically not only code, but also have to prove some property of a given implementa-
tion, for example that a tail-recursive variant of a function is equivalent to its non-tail-recursive variant.
This is typically done with the substitution semantics of functional programs, so that such proofs only
need instantiation of free parameters and equational reasoning. This makes them feasible for automated
grading with guaranteed correctness.

We believe that students can write such proofs in LISA without deep knowledge of proof assistants,
because LISA’s high-level interface and a DSL provide an intuitive and programmer-friendly environ-
ment. To illustrate the key features, consider an example exercise from a midterm exam of a past edition
of EPFL’s Functional Programming course. The goal of this exercise is to prove that the methods map
and mapTr (a tail-recursive variant of map) on singly-linked lists are equivalent. The following example
shows how the first intermediate lemma that students have to prove would look like in LISA.

1 val AccOutNil = Theorem( Nil.mapTr(f, (x :: xs)) === (x :: Nil.mapTr(f, xs)) ) {
2 have ( Nil.mapTr(f, (x :: xs)) === (x :: xs) )
3 by Apply(mapTr.NilCase of (acc -> (x :: xs)))
4 thenHave( Nil.mapTr(f, (x :: xs)) === (x :: Nil.mapTr(f, xs)) )
5 by Apply(mapTr.NilCase of (acc -> xs)) }

Note that the terms in formulas above appear syntactically identical to their Scala program counterparts.
Using Stainless and Scala 3 multi-stage programming, these proofs can apply to executable Scala pro-
grams. We expect further synergies, such as using Scala’s pattern matching on algebraic data types to
write proofs and definitions by case analysis.
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