
LISA Tool Integration and Education Plans
Sankalp Gambhir1 , Simon Guilloud1 , Dragana Milovančević1 , Philipp

Rümmer2 , and Viktor Kunčak1

1EPFL IC LARA, Station 14, CH-1015 Lausanne, Switzerland
2University of Regensburg, Faculty of Informatics and Data Science, 93040 Regensburg, Germany
{Sankalp.Gambhir,Simon.Guilloud,Dragana.Milovancevic,Viktor.Kuncak}@epfl.ch,

Philipp.Ruemmer@ur.de

LISA is a theorem prover implemented in Scala based on Tarski-Grothendieck (TG) set theory (foun-
dations similar to those of Mizar [23] and higher-order encoding of TG in Isabelle/HOL [7]). Since our
first announcement [11], we have developed a domain-specific proof language and a core library [12,13],
including transfinite recursion. LISA proofs are Scala programs whose execution generates sequent cal-
culus proof sequences checked by the LISA kernel [12, 13]. Proof construction can use all features of
Scala to prove theorems from previously proven theorems, axioms, and conservative definitions. We
present applications and planned developments of LISA. This includes an embedding of HOL to enable
use of HOL provers and libraries, reasoning about programs using the Eldarica Horn clause solver and
the Stainless Scala verifier, as well as using LISA for checked proofs in functional programming courses.

Embeddings of HOL in set theory, using HOL solvers We plan to develop an embedding of Higher-
Order Logic and type theory in LISA’s set theory. In set theory, a function with domain and range
sets 𝐴 and 𝐵 is represented as a subset of their Cartesian product 𝐴 × 𝐵 encoding the graph of the
function [18, 20]. Thus, function spaces 𝐴 → 𝐵 are sets, denoted 𝐵𝐴. This yields a natural embedding
of classical HOL functions. The type of HOL individuals is interpreted as an infinite set, and Boolean
type becomes the ordinal 2 = {0, 1}. Predicates over a set 𝐴 become the characteristic functions 2𝐴,
and logical connectives functions taking elements of 2 and returning an element of 2. The ∀ quantifier
reduces to equality, ∀𝑥 ∈ 𝐴.𝑃 (𝑥) ∶= ((𝜆𝑥 ∈ 𝐴.𝑃 (𝑥)) =𝑇 (𝜆𝑥 ∈ 𝐴.True)) with =𝑇 the characteristic
function of {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝑇 } over 𝑇 × 𝑇 , here used with 𝑇 = 2𝐴.

We plan to use this encoding in two ways. First, we will use automated higher-order theorem provers
to prove statements whose subterms have bounded domains. The provers we are considering include
LEO-III [32] (also implemented in Scala), Lash [8], Zipperposition [4], and new versions of E [33].
Because the deduction rules of HOL are provable within set theory, it is then possible to recover the proof
within LISA. Second, we will explore importing proofs and theories from HOL4 [31], HOL Light [15],
and Isabelle/HOL [25] into LISA, which will help in bootstrapping our library.

As in HOL, the restriction of set theory statements to functions and predicates whose domains are
proper sets imposes a type structure of simply typed lambda calculus, for which there are efficient type
checking and inference algorithms. This will provide the basis for a soft-type system over set theory.
Further down the line, we will explore the encoding of dependent types using dependent function spaces
(products) in set theory. Combined with induction principles (which we have recently derived in LISA
using conventional transfinite induction), and universes (whose existence is implied by large cardinals
in LISA’s Tarski-Grothendieck set theory), we expect [34] to be in a position to enable interoperability
with type theoretic libraries such as Lean’s standard library [9] and, for example, Coqtail [2] for Coq.

Combining LISA, Stainless and Eldarica to reason about programs Verifying safety and termina-
tion properties of (higher-order) programs has been a long-standing problem, and is one of the intended
application domains of LISA. There remain significant challenges in making full functional verification
of these programs tractable. One approach for solving this problem is to use program verifiers, such

https://orcid.org/0000-0001-5994-1081
https://orcid.org/0000-0001-8179-7549
https://orcid.org/0009-0003-0795-881X
https://orcid.org/0000-0002-2733-7098
https://orcid.org/0000-0001-7044-9522

Tool Integration and Education Plans for LISA S. Gambhir, S. Guilloud, D. Milovancevic, P. Rümmer, and V. Kunčak

as the Stainless tool developed in our group [1, 14]. Stainless allows a programmer to work in Scala
and specify functional contracts within the source language. Stainless relies on converting the code and
contracts to SMT formulas and passing them to external solvers, providing support for a large subset
of functional and imperative Scala code. Stainless is supported by formally verified foundations [14],
but has several limitations. First, the implementation relies on external SMT solvers without checking
their result, which can be problematic [26] and limits the trustworthiness. Second, Stainless does not
automatically infer inductive invariants for safety verification. Third, when an automated proof attempt
fails, the abilities to provide proof hints are limited. To address all these limitations, we plan to convert
Stainless programs to Constrained Horn Clauses (CHCs) and construct end-to-end formally checked
proofs for properties of CHCs. CHCs naturally express program flow, and have seen extensive use in
program verification [6,29]. We will define the semantics of CHCs in LISA and prove generic properties
about such systems, which may be used during automated and manual verification. We will use Scala
as a user-friendly language for specification of programs and algorithms, and use Stainless to generate
CHCs to be verified. We view the correctness of the transformation from a complex language to CHCs
as a separate verified compilation problem, similar to that of CakeML [19], [35]. We intend to use the
Eldarica CHC solver [16, 30] based on Princess [28] to aid solving of CHCs.

The resulting proofs (both for Horn clause solving of Eldarica and for constraint reasoning of Princess)
will be checked by the LISA kernel. In cases where automated verification fails, LISA will enable users
to construct semi-manual proofs about CHCs, using tactics and the proof DSL. We believe these devel-
opments will greatly increase the automation and the scope of applicability of reasoning about programs.

LISA’s potential in education Automated theorem proving is increasingly finding its way in edu-
cation, both for mathematics and computer science programs [3]. Proof assistants are used not only
in graduate courses [17, 24, 27] but also in undergraduate courses [21] and high schools [5, 10]. With
LISA, we aim to go one step further, proposing the use of proof assistants for introductory programming
courses. We have successfully developed methods to automatically and formally verify correctness of
student code with respect to a given reference solution [22] using Stainless. In functional programming
courses, students typically not only code, but also have to prove some property of a given implementa-
tion, for example that a tail-recursive variant of a function is equivalent to its non-tail-recursive variant.
This is typically done with the substitution semantics of functional programs, so that such proofs only
need instantiation of free parameters and equational reasoning. This makes them feasible for automated
grading with guaranteed correctness.

We believe that students can write such proofs in LISA without deep knowledge of proof assistants,
because LISA’s high-level interface and a DSL provide an intuitive and programmer-friendly environ-
ment. To illustrate the key features, consider an example exercise from a midterm exam of a past edition
of EPFL’s Functional Programming course. The goal of this exercise is to prove that the methods map
and mapTr (a tail-recursive variant of map) on singly-linked lists are equivalent. The following example
shows how the first intermediate lemma that students have to prove would look like in LISA.

1 val AccOutNil = Theorem(Nil.mapTr(f, (x :: xs)) === (x :: Nil.mapTr(f, xs))) {
2 have (Nil.mapTr(f, (x :: xs)) === (x :: xs))
3 by Apply(mapTr.NilCase of (acc -> (x :: xs)))
4 thenHave(Nil.mapTr(f, (x :: xs)) === (x :: Nil.mapTr(f, xs)))
5 by Apply(mapTr.NilCase of (acc -> xs)) }

Note that the terms in formulas above appear syntactically identical to their Scala program counterparts.
Using Stainless and Scala 3 multi-stage programming, these proofs can apply to executable Scala pro-
grams. We expect further synergies, such as using Scala’s pattern matching on algebraic data types to
write proofs and definitions by case analysis.

2

Tool Integration and Education Plans for LISA S. Gambhir, S. Guilloud, D. Milovancevic, P. Rümmer, and V. Kunčak

References
[1] Stainless - a verification framework for a subset of the Scala programming language. https://github.com/

epfl-lara/stainless/.
[2] Guillaume Allais, Sylvain Dailler, Hugo Férée, Jean-Marie Madiot, Pierre-Marie Pédrot, and Amaury Pouly.

Coq-community/coqtail-math: Coqtail is a library of mathematical theorems and tools proved inside the Coq
proof assistant. Results range mostly from arithmetic to real and complex analysis. [maintainer=@jmadiot].
https://github.com/coq-community/coqtail-math.

[3] Evmorfia Bartzia, Antoine Meyer, and Julien Narboux. Proof assistants for undergraduate mathematics and
computer science education: elements of a priori analysis. In María Trigueros, editor, INDRUM 2022: Fourth
conference of the International Network for Didactic Research in University Mathematics, Hanovre, Germany,
October 2022. Reinhard Hochmuth.

[4] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirovic. Superposition for higher-
order logic. J. Autom. Reason., 67(1):10, 2023.

[5] Yves Bertot, Frédérique Guilhot, and Loic Pottier. Visualizing Geometrical Statements with GeoView. Electr.
Notes Theor. Comput. Sci., 103:49–65, 11 2004.

[6] Nikolaj S. Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. Horn clause solvers for
program verification. In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner, and
Wolfram Schulte, editors, Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the
Occasion of His 75th Birthday, volume 9300 of Lecture Notes in Computer Science, pages 24–51. Springer,
2015.

[7] Chad E. Brown, C. Kaliszyk, and Karol Pak. Higher-Order Tarski Grothendieck as a Foundation for Formal
Proof. In ITP, 2019.

[8] Chad E. Brown and Cezary Kaliszyk. Lash 1.0 (system description). In Jasmin Blanchette, Laura Kovács,
and Dirk Pattinson, editors, Automated Reasoning - 11th International Joint Conference, IJCAR 2022, Haifa,
Israel, August 8-10, 2022, Proceedings, volume 13385 of Lecture Notes in Computer Science, pages 350–358.
Springer, 2022.

[9] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The Lean
Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp, editors, Automated Deduc-
tion - CADE-25, Lecture Notes in Computer Science, pages 378–388, Cham, 2015. Springer International
Publishing.

[10] Frédérique Guilhot. Formalisation en Coq et visualisation d’un cours de géométrie pour le lycée. Technique
et Science Informatiques, 24:1113–1138, 11 2005.

[11] Simon Guilloud, Florian Cassayre, and Viktor Kunčak. LISA: Towards a foundational theorem prover. 7th
Conference on Artificial Intelligence and Theorem Proving, AITP 2022, September 4-9, 2022, Aussois and
online, France, http://aitp-conference.org/2022/abstract/AITP_2022_paper_23.pdf.

[12] Simon Guilloud, Sankalp Gambhir, and Viktor Kuncak. LISA – A Modern Proof System. In To appear in
ITP, Conference on Interactive Theorem Proving, 2023.

[13] Simon Guilloud, Sankalp Gambhir, and Viktor Kuncak. Lisa – a modern proof system (preprint).
http://infoscience.epfl.ch/record/300562, 2023.

[14] Jad Hamza, Nicolas Voirol, and Viktor Kunčak. System FR: Formalized foundations for the Stainless verifier.
Proc. ACM Program. Lang, 3, November 2019.

[15] John Harrison. The HOL Light manual (1.1). page 116.
[16] Hossein Hojjat and Philipp Rümmer. The eldarica horn solver. In 2018 Formal Methods in Computer Aided

Design (FMCAD), pages 1–7. IEEE, 2018.
[17] Frederik Jacobsen and Jørgen Villadsen. On Exams with the Isabelle Proof Assistant. Electronic Proceedings

in Theoretical Computer Science, 375:63–76, 03 2023.
[18] Thomas J. Jech. Set Theory. Number 79 in Pure and Applied Mathematics, a Series of Monographs and

Textbooks. Academic Press, New York, 1978.
[19] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. Cakeml: a verified implementation

3

https://github.com/epfl-lara/stainless/
https://github.com/epfl-lara/stainless/
http://aitp-conference.org/2022/abstract/AITP_2022_paper_23.pdf

Tool Integration and Education Plans for LISA S. Gambhir, S. Guilloud, D. Milovancevic, P. Rümmer, and V. Kunčak

of ML. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 179–
192. ACM, 2014.

[20] Kenneth Kunen. Set Theory An Introduction To Independence Proofs. North Holland, Amsterdam Heidelberg,
reprint edition edition, December 1983.

[21] Hendriks Maxim, Cezary Kaliszyk, Femke van Raamsdonk, and Freek Wiedijk. Teaching logic using a state-
of-art proof assistant. Acta Didactica Napocensia, 3, 06 2010.

[22] Dragana Milovančević and Viktor Kunčak. Proving and Disproving Equivalence of Functional Programming
Assignments. In ACM SIGPLAN Conf. Programming Language Design and Implementation (PLDI), 2023.

[23] Adam Naumowicz and Artur Kornilowicz. A Brief Overview of Mizar. In Proceedings of the 22nd Interna-
tional Conference on Theorem Proving in Higher Order Logics, volume 5674, pages 67–72, 2009.

[24] Tobias Nipkow. Teaching Semantics with a Proof Assistant: No More LSD Trip Proofs. In Viktor Kuncak
and Andrey Rybalchenko, editors, Verification, Model Checking, and Abstract Interpretation, pages 24–38,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[25] Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL. Springer, 2014.
[26] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. Generative type-aware mutation for testing

smt solvers. Proc. ACM Program. Lang., 5(OOPSLA), oct 2021.
[27] Benjamin Pierce. Lambda, the Ultimate TA Using a Proof Assistant to Teach Programming Language Foun-

dations. pages 121–122, 08 2009.
[28] Philipp Rümmer. A constraint sequent calculus for first-order logic with linear integer arithmetic. In Proceed-

ings, 15th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume
5330 of LNCS, pages 274–289. Springer, 2008.

[29] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Classifying and solving horn clauses for verification.
In Fifth Working Conference on Verified Software: Theories, Tools and Experiments, 2013.

[30] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Disjunctive interpolants for horn-clause verification. In
Computer Aided Verification (CAV), 2013.

[31] Konrad Slind and Michael Norrish. A Brief Overview of HOL4. pages 28–32, August 2008.
[32] Alexander Steen and Christoph Benzmüller. The Higher-Order Prover Leo-III (Extended Version), April 2018.
[33] Petar Vukmirovic, Jasmin Blanchette, and Stephan Schulz. Extending a high-performance prover to higher-

order logic. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Pro-
ceedings, Part II, volume 13994 of Lecture Notes in Computer Science, pages 111–129. Springer, 2023.

[34] Benjamin Werner. Sets in types, types in sets. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Martín
Abadi, and Takayasu Ito, editors, Theoretical Aspects of Computer Software, volume 1281, pages 530–546.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[35] Johannes Åman Pohjola, Henrik Rostedt, and Magnus O. Myreen. Characteristic Formulae for Liveness Prop-
erties of Non-Terminating CakeML Programs. In 10th International Conference on Interactive Theorem Prov-
ing (ITP 2019), Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:19, 2019.

4

